
Parsing with
Perl 6 Regexes
and Grammars

A Recursive Descent into Parsing
—
Moritz Lenz

Parsing with Perl 6
Regexes and

Grammars
A Recursive Descent into

Parsing

Moritz Lenz

Parsing with Perl 6 Regexes and Grammars: A Recursive Descent into
Parsing

ISBN-13 (pbk): 978-1-4842-3227-9 ISBN-13 (electronic): 978-1-4842-3228-6
https://doi.org/10.1007/978-1-4842-3228-6

Library of Congress Control Number: 2017960890

Copyright © 2017 by Moritz Lenz

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Brendan Frost

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484232279. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Moritz Lenz
Fürth, Bayern, Germany

https://doi.org/10.1007/978-1-4842-3228-6

iii

Table of Contents

Chapter 1: What are Regexes and Grammars? �������������������������������������1

1.1 Use Cases ...1

Searching ..1

Validation ...3

Parsing ..3

1.2 Regexes or Regular Expressions? ...4

1.3 What’s So Special about Perl 6 Regexes? ...5

Chapter 2: Getting Started with Perl 6 ��7

2.1 Installing Rakudo Perl 6 .. 7

Rakudo Star from Native Installers ..8

Binary Linux Packages ..8

Docker-Based Installation..8

2.2 Using Rakudo Perl 6 .. 9

2.3 Obtaining the Code Examples ...11

2.4 First Steps with Perl 6 ... 11

Variables and Values ...12

Strings ...13

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

iv

Control Structures ...14

Functions, Classes, and Methods ..15

Learning More About Perl 6 ...16

2.5 Summary...16

Chapter 3: The Building Blocks of Regexes ��17

3.1 Literals ..17

3.2 Meta Characters vs. Literals ...18

3.3 Anchors ...19

3.4 Predefined Character Classes ...21

User-Defined Character Classes ..23

Unicode Properties ..25

3.5 Quantifiers...26

Greedy and Frugal Quantifiers ...27

Quantifiers with Separators ...27

3.6 Disjunction ..28

3.7 Conjunction ...29

3.8 Zero-Width Assertions ...30

3.9 Summary...32

Chapter 4: Regexes and Perl 6 Code ���33

4.1 Smart-Matching ..33

4.2 Quote Forms..34

4.3 Modifiers ...35

4.4 Comb and Split ..38

4.5 Substitution ...39

4.6 Crossing the Code and Regex Boundary ...42

4.7 Summary...46

Table of ConTenTsTable of ConTenTs

v

Chapter 5: Extracting Data from Regex Matches ��������������������������������47

5.1 Positional Captures ...47

5.2 The Match Object ..48

Nesting of Captures ...49

Quantified Captures ...49

5.3 Named Captures ...50

5.4 Backreferences ...52

Excursion: Primality Test with Backreferences ..52

5.5 Match Objects Revisited ...55

5.6 Summary...56

Chapter 6: Regex Mechanics ��57

6.1 Matching with State Machines ...57

Deterministic State Machines ...57

Nondeterministic State Machines ...62

6.2 Regex Control Flow ...64

6.3 Backtracking ...65

6.4 Why Would You Want to Avoid Backtracking? ...68

Performance ..68

Correctness ...70

6.5 Frugal Quantifiers and Backtracking ..71

6.6 Longest Token Matching ...71

6.7 Summary...73

Chapter 7: Regex Techniques ���75

7.1 Know Your Data Format ..75

Well-Defined Data Formats ...75

Exploring Data Formats ...76

7.2 Think About Invalid Inputs ...78

Table of ConTenTsTable of ConTenTs

vi

7.3 Use Anchors ..79

7.4 Matching Quoted Strings ..80

Quoted Strings with Escaping Sequences ...81

7.5 Testing Regexes ..83

7.6 Summary...89

Chapter 8: Reusing and Composing Regexes �������������������������������������91

8.1 Named Regexes ..91

Lexical Analysis and Backtracking Control ..93

8.2 Whitespace..95

8.3 Grammars ...98

8.4 Code Reuse with Grammars ...100

Inheritance ..100

Role Composition ...102

8.5 Proto Regexes ...104

8.6 Summary...108

Chapter 9: Parsing with Grammars ��109

9.1 Understanding Grammars ...109

Recursive Descent Parsing and Precedence ...112

Left Recursion and Other Traps ...113

9.2 Starting Simple ...114

9.3 Assembling Complete Grammars ..116

9.4 Debugging Grammars ...116

9.5 Parsing Whitespace and Comments ...121

9.6 Keeping State ..123

Implementing Lexical Scoping with Dynamic Variables128

Scoping Through Explicit Symbol Tables ...131

9.7 Summary...134

Table of ConTenTsTable of ConTenTs

vii

Chapter 10: Extracting Data from Matches ��������������������������������������135

10.1 Action Objects ...136

10.2 Building ASTs with Action Objects ..141

10.3 Keeping State in Action Objects ..143

10.4 Summary...145

Chapter 11: Generating Good Parse Error Messages ������������������������147

11.1 Exploring the Problem ...147

11.2 Assertions ...149

11.3 Improved Position Reporting ...151

11.4 High-Water Marks ...153

11.5 Parser Combinator and FAILGOAL ...155

11.6 Which Techniques to Use? ..157

11.7 Summary...158

Chapter 12: Unicode and Natural Language �������������������������������������159

12.1 Writing Systems ..159

12.2 Bytes, Code Points, Graphemes, and Glyphs ...161

Grapheme Clusters ..161

Glyphs ..163

12.3 Unicode Properties ..163

12.4 Summary...164

Chapter 13: Case Studies ��165

13.1 S-Expressions ...165

Parsing S-Expressions ...166

Data Extraction ..171

13.2 Mathematical Expressions and Operator Precedence Parsers174

A Simple Operator Precedence Parser ..174

A More Flexible Approach ..180

Table of ConTenTsTable of ConTenTs

viii

13.3 Pythonesque, an Indentation-Based Language ...183

A Grammar for Pythonesque ...184

Action Objects ...190

13.4 Summary...193

Index ���195

Table of ConTenTsTable of ConTenTs

ix

About the Author

Moritz Lenz is a contributor to the Rakudo

Perl 6 compiler, initiator of the official Perl 6

documentation project, former maintainer of

the official test suite, and a prolific blogger and

author.

He works as software architect and

principal software engineer for a mid-sized IT

outsourcing company.

xi

About the Technical Reviewer

Massimo Nardone has more than 22 years

of experience in Security, Web/Mobile

development, Cloud, and IT Architecture. His

true IT passions are Security and Android.

He has been programming and teaching

how to program with Android, Perl, PHP, Java,

VB, Python, C/C++, and MySQL for more than

20 years.

He holds a Master of Science degree in

Computing Science from the University of

Salerno, Italy.

He has worked as a Project Manager, Software Engineer, Research

Engineer, Chief Security Architect, Information Security Manager,

PCI/SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA Architect

for many years.

Massimo’s technical skills include Security, Android, Cloud, Java,

MySQL, Drupal, Cobol, Perl, Web and Mobile development, MongoDB,

D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS,

Jekyll, and Scratch.

He currently works as Chief Information Security Officer (CISO) for

Cargotec Oyj.

He worked as visiting lecturer and supervisor for exercises at the

Networking Laboratory of the Helsinki University of Technology (Aalto

University). He holds four international patents (PKI, SIP, SAML, and Proxy

areas).

Massimo has reviewed more than 40 IT books for different publishing

companies, and he is the coauthor of Pro Android Games (Apress, 2015).

xiii

Acknowledgments

I am grateful for fruitful and in-depth discussions with Barry Keeling,

which helped me get a fresh look on some of the topics discussed.

I’d also like to thank the following beta readers for early feedback and

corrections:

• Andrew Shitov

• Brian Duggan

• Cassandra T.

• Daniel Green

• Douglas E. Miles

• Fernando Santagata

• Jonathan Scott Duff

• Lanlan Pan

• Laurent Rosenfeld

• Leon Timmermans

• Mark Devine

• Mohammad S. Anwar

• Paul Cochrane

• Rúbio R. C. Terra

• Theodore Katseres

• Vitali Peil

xiv

• Wolfgang Banaston

• Zengargoyle

• Zoffix Znet

The number of names on this list should give you an idea of

how awesome the Perl 6 community is. I asked for proofreaders for

a manuscript on a fairly specialized topic, and more than 20 people

volunteered, each putting multiple hours, sometimes even dozens of

hours, into the task. This community also played a big part in teaching me

the knowledge I relay here; I learned a lot about regexes and parsing from

Patrick R. Michaud, Jonathan Worthington, Carl Mäsak, and Larry Wall,

and I remain grateful for the freedom with which they taught everybody

who wanted to learn.

Brian Duggan gets credit for coming up with the subtitle for this book.

Special thanks also go to the Apress team, who were both professional

and very kind through the process of writing and publishing this book:

Steve Anglin, Mark Powers, Massimo Nardone, and Matthew Moodie.

And last but not least, I’d like to thank my family for supporting me

throughout the process of writing this book. Thank you Signe, Ronja,

and Ida!

aCknowledgmenTsaCknowledgmenTs

1
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_1

CHAPTER 1

What are Regexes
and Grammars?
We come into contact with all sorts of structured data: telephone numbers,

e-mail addresses, postal addresses, credit card numbers, and so on.

A regex is a declarative programming construct that describes such data

formats. Regexes allow you to search for data, ensure that input is indeed

in the described format, and even extract relevant components, such as the

ZIP code of a postal address, or the timestamp from a log file entry.

When you need to read and validate more complex structures, such

as a programming language, or a markup language like XML, you can

combine many regexes into grammars. Grammars do more than simply

combine regexes. They also offer infrastructure for generating good error

messages and keeping track of state while analyzing the input text.

1.1 Use Cases

 Searching
A common use of regexes is to search for patterns of interest in large

volumes of data, such as looking for certain messages in log files, for URLs,

or for phone numbers in text. At the time of writing, about 6% of the entries

in my .bash_history involve searching with regexes.

2

Many command-line tools offer support for some dialect of regular

expressions and allow you to search file names, file contents, logs,

captured network traffic, and nearly everything else you can think of.

Regexes are also easily accessible from most modern programming

languages, making them a ubiquitous and indispensable search tool.

Figure 1-1. “Regular Expressions” by Randall Munroe on XKCD,
https://xkcd.com/208/

Chapter 1 What are regexes and grammars?

https://xkcd.com/208/

3

 Validation
Most applications face untrusted user input. Web applications in particular

are confronted with a lot of untrusted input. This input must be validated

before applying any further logic to it or storing it in, for example, a database.

Regexes are a common first step toward validation. They make it trivial

to check for simple things such as digits, and verifying the minimal and

maximal length of input. At the same time, they allow the programmer to

do much more precise and sophisticated checks.

All the web application programmer needs to provide is a regex and

associate it with an input field. The web framework can then validate form

input against all configured regexes and automatically generate error

messages for the end user, so that the web application programmer does

not need to deal with the workflow of rejecting the input and re-generating

the form.

 Parsing
Regexes alone are not very suitable for parsing complex input data. Perl 6,

however, adds some features that make it well suited for this task. These

extensions include easy-to-use backtracking control and composability

through named regexes.

The result of a successful regex match is a match object, which contains

all the necessary metadata to extract the interesting bits from the parsed text.

There are also some features that make it easy to turn a match object into an

abstract syntax tree or AST, a data structure suitable for use outside the parser.

Chapter 1 What are regexes and grammars?

4

1.2 Regexes or Regular Expressions?
The theoretical foundation for regular expressions comes from computer

science, which describes a hierarchy of formal languages and automatons,

or formal machines, that can recognize these languages. The most

restricted of these languages is called a regular language.1 Deciding

whether or not a particular string is in a regular language requires a

fixed amount of memory and a constant number of computing steps per

character.

Regular expressions are a formalism for writing regular languages. As

such concepts from theoretical computer science go, they are minimalistic,

only allowing literals, alternations (|), parentheses for grouping, and the

Kleene star2 (*) for zero or more repetitions.

Early text processing tools such as grep, sed, and awk picked up the

concept of regular expressions and added many convenience features,

such as the ability to write [a-z] instead of a|b|c|d|e.... They provided

predefined character classes, sets of characters like letters, digits,

whitespace characters, and so on. They also added captures, which

help with extracting strings that a particular part of a regular expression

matches.

Later implementations added features that went beyond what

regular languages allow, thus the need for a separate word. These

implementations also optimize for ease of use instead of the minimalism

of the theoretical construct that makes it easy to reason about. We now

tend to use regex when talking about practical (and more powerful)

implementations in programming languages and libraries.

1 https://en.wikipedia.org/wiki/Regular_language
2 https://en.wikipedia.org/wiki/Kleene_star

Chapter 1 What are regexes and grammars?

https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Kleene_star

5

1.3 What’s So Special about Perl 6
Regexes?

To continue the history course from the previous section, Perl was one of

the first general-purpose programming languages to bake regexes into its

core functionality. It borrowed syntax from earlier regex implementations

and extended it in ways that made regexes more powerful and more useful.

Soon, Perl’s particular version of regex was the de facto standard. So

much so, that a library called Perl-Compatible Regular Expressions (PCRE)

was created so that other software could utilize “Perl regexes” in their

implementations.

Unfortunately, in making regexes so useful, Perl had assigned special

meaning to almost every ASCII character (except those that match

literally). And, as newer and more powerful regex features were created,

this led to using obscure character sequences for the new features while

continuing to maintain backward compatibility with existing regex syntax.

A good example of such a character sequence is (?<=pattern) for look-

behind assertions.

Perl 6 regexes clean up this historical syntactic baggage. They improve

readability by allowing whitespace everywhere, introducing clean rules

about which characters are special and which aren’t, and maybe most

importantly, having a simple and extensible syntax for calling other

regexes by name.

While most languages treat regexes either as strings or as special

objects, Perl 6 regexes are code; and when grouped together within a

grammar, they are like methods. This gives you the freedom to apply

to regexes all the techniques for managing and reusing code that you

are used to from programming languages: namespaces, classes, roles,3

inheritance, etcetera.

3 Other programming languages use the word “Traits” for the concept behind
Perl 6 roles.

Chapter 1 What are regexes and grammars?

https://en.wikipedia.org/wiki/Trait_(computer_programming)

6

The ability to compose regexes makes it possible to do more than

parse simple string formats. You can write grammars that use many small

regexes to parse complex file formats. In fact, the Rakudo Perl 6 compiler

itself uses a Perl 6 grammar to parse Perl 6 source code.

Chapter 1 What are regexes and grammars?

7
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_2

CHAPTER 2

Getting Started
with Perl 6
You will likely pick up some things and understand the basic concepts

from reading this book; but if your goal is fluency and a deeper

understanding, you should run the examples yourself, modify them, and

experiment with them.

In order to do that, you first need to install the Rakudo Perl 6 compiler,

version 2017.05 or newer. Afterward, we’ll discuss how to use it for regex

experimentation.

If you are loath to install software on your computer, you could also

use an online service that evaluates code for you. At the time of writing,

https://glot.io/new/perl6 and https://tio.run/#perl6 support

running Perl 6 code in the browser. You can also check https://perl6.

org/resources/ for an up-to-date list of similar services.

2.1 Installing Rakudo Perl 6
The Rakudo Perl 6 compiler comes in two varieties: the compiler itself, and

Rakudo Star. The latter is a distribution containing the compiler, the zef

module installer, documentation, and some modules.

https://glot.io/new/perl6
https://tio.run/#perl6
https://perl6.org/resources/
https://perl6.org/resources/

8

For our purposes, you need the compiler and zef. Installing Rakudo

Star gives you both, but if the Rakudo Star installer doesn’t work for you,

or you prefer a leaner installation, you can install just the compiler and

bootstrap zef according to its documentation.1

The following are some options for installing Rakudo Perl 6.

 Rakudo Star from Native Installers
The Rakudo Star download page at http://rakudo.org/downloads/star/

offers binary installers for Windows and Mac OS. You can install them by

simply opening the downloaded file.

 Binary Linux Packages
The Rakudo OS Packages2 repository contains instructions on how to

obtain and use Rakudo Perl 6 packages for CentOS, Debian, Fedora, and

Ubuntu. They come with the compiler and a script to install zef; quite

enough for our purposes.

 Docker-Based Installation
On platforms with Docker support, you can obtain a prebuilt, lightweight

image containing the Rakudo Perl 6 compiler, as well as zef, with just one

command:

$ docker pull moritzlenz/perl6-regex-alpine

This Docker image contains Rakudo Perl 6 as well as a few modules

that make it easier to work with regexes and grammars.

1 https://github.com/ugexe/zef#manual
2 https://github.com/nxadm/rakudo-pkg/releases

Chapter 2 GettinG Started with perl 6

https://github.com/ugexe/zef#manual
http://rakudo.org/downloads/star/
https://github.com/nxadm/rakudo-pkg/releases
https://github.com/ugexe/zef#manual
https://github.com/nxadm/rakudo-pkg/releases

9

Once you have pulled the image, you can use it as follows to execute a

one-liner:

$ docker run -it moritzlenz/perl6-regex-alpine -e 'say "hi"'

Since Docker containers run in their own isolated world, you need to

take extra steps to make script files available to the container. For instance,

if you wish to execute a script search.p6, you could run it like this:

$ docker run -it -v $PWD:/perl6 -w /perl6 \

 moritzlenz/perl6-regex-alpine search.p6

This is unwieldy, so a bash alias (or shell script) can help:

$ alias p6d="docker run -it -v $PWD:/perl6 -w /perl6

 moritzlenz/perl6-regex-alpine"

After that, executing a script becomes much easier:

$ p6d search.p6

In general, this book assumes the presence of a perl6 executable. If

you use the docker image, replace perl6 with p6d in all commands.

2.2 Using Rakudo Perl 6
You can verify that your Rakudo Perl 6 installation works by running perl6

--version, which should print something like this:

This is Rakudo version 2017.05-315-g160de7e built on MoarVM

version 2017.05-25-g62bc54e

implementing Perl 6.c.

If you can’t get it to work yourself, you can ask the Perl 6 Community3

for help.

3 https://perl6.org/community/

Chapter 2 GettinG Started with perl 6

https://perl6.org/community/
https://perl6.org/community/

10

Once it works, you can start a simple, interactive shell by running

perl6 without further arguments:

$ perl6

To exit type 'exit' or '^D'

> say "Hello, world";

Hello, world

> exit

In this shell, you can type lines of Perl 6 code, which are executed

immediately. This is very useful for testing regexes:

> say "Hello, world" ~~ / \w+ /

⌜Hello⌟

(Don’t worry if you don’t understand yet what exactly is happening

here; the next chapter will explain it in detail.)

If the prompt comes back like this instead:

$ perl6

You may want to `zef install Readline` or `zef install

Linenoise` or use rlwrap for a line editor.

To exit type 'exit' or '^D'

>

You should follow the advice from the greeting message and install one

of the modules mentioned. This gives you the ability to access and edit the

history of your commands:

$ zef install Linenoise

===> Searching for: Linenoise

===> Searching for missing dependencies: LibraryMake

...

===> Installing: Linenoise:ver('0.1.1'):auth('Rob Hoelz')

Chapter 2 GettinG Started with perl 6

11

Of course, you can also use perl6 to execute a script file, just by adding

the script file to the command line:

$ perl6 greet.p6

Hello, world

assuming you have a file greet.p6 in the current working directory

containing the line say "Hello, world";.

2.3 Obtaining the Code Examples
The source for the code examples used in this book is available on GitHub:

$ git clone https://github.com/apress/perl-6-regexes-and-

grammars.git

If you don’t have git available, you can also download a zip archive

with the source code from https://github.com/apress/perl-6-regexes-

and-grammars/archive/master.zip.

I encourage you to run these example scripts, modify them, and play

with them. This is the best way to learn the topics more deeply than by

merely reading this book.

2.4 First Steps with Perl 6
In order to use Perl 6 regexes effectively, you need to know a bit about the

language they are embedded in.

Perl 6 is a mostly free-form language, so you indent your code whatever

way you like. There are however cases where the presence or absence of

whitespace matters: doit(1, 2, 3) calls the function doit with three

arguments, whereas doit (1, 2, 3) calls the same function with a single

argument, which is a list of three values.

Chapter 2 GettinG Started with perl 6

https://github.com/apress/perl-6-regexes-and-grammars/archive/master.zip
https://github.com/apress/perl-6-regexes-and-grammars/archive/master.zip

12

Statements are separated by the semicolon (;) character, and you

can also put one in the last line of your program. Comments start with a

hashmark (#) character, and extend until the end of the line:

say "Hello, World"; # Output: Hello, World

say(2 * 21); # Output: 42

 Variables and Values
Variables are declared with the keyword my, and start with a sigil, a symbol

that tells us a bit about their general type:

my $x = 1;

my @capitals = 'Algiers', 'Tirana', 'Berlin', 'Tokio';

my %populations =

 Algiers => 3_500_000,

 Berlin => 3_700_000,

 Tirana => 353_400,

 ;

The $ stands for a scalar variable—a variable that typically holds a

single value. In contrast, the @ denotes an array, a linear collection of

values that lets you access elements through a zero-based index. In the

context of the previous code block, @capitals[0] returns 'Algiers'.

A hash (some other languages call this a dictionary or a map)

associates keys (which are strings) with values. You can look up values to a

key via the {} indexing operator, and use several useful methods:

say %populations{'Algiers'}; # Output: 3500000

say %populations.keys.sort; # Output: (Algiers Berlin Tirana)

say %populations.values.sum; # Output: 7553400

Chapter 2 GettinG Started with perl 6

13

 Strings
Since regexes work on strings, we should talk more about them.

A string is a sequence of Unicode characters.4 We’ve already seen some

examples of strings surrounded by single quotes '' and double quotes "".

The main difference is that double quotes enable escape sequences like \n

for a line break (newline), and interpolation of variables, where the name

of a variable is replaced by its value:

my $name = 'Larry';

say "Hello, $name"; # Output: Hello, Larry

say 'Hello, $name'; # Output: Hello, $name

However, even inside single quotes, you can write a single quote by

escaping it with a backslash. By the same token, a backslash must be

doubled in such a string:

say 'a quote: \' a backslash: \\';

Output: a quote: ' a backslash: \

Here-documents offer a neat way to write multiline strings:

my $macbeth = q:to/END/; # need to put the ; on this line!

When shall we three meet again?

In thunder, lightning, or in rain?

When the hurlyburly's done,

When the battle's lost and won.

END

normal Perl 6 code resumes here

You can pick your own delimiter, though it is customary to write it all in

uppercase, to make it easier to spot where the here-document ends.

4 Rakudo Perl 6 expects your program file to be UTF-8 encoded.

Chapter 2 GettinG Started with perl 6

14

 Control Structures
Control structures such as loops and branches all follow the same basic

pattern, KEYWORD EXPRESSION { BLOCK }, and the if construct also allows

elsif and else statements to be attached:

for 1, 2, 3 {

 say $_;

}

if 1 > 2 {

 say "No Way";

}

elsif 1 == 2 {

 say "Still no chance";

}

else {

 say "This runs";

}

This code produces the output

1

2

3

This runs

Inside the block of a for loop, the current value is stored in the

special variable $_. If you want to use a different variable, you can use the

following syntax, which is called a pointy block:

for 1, 2, 3 -> $value {

 say $value;

}

Chapter 2 GettinG Started with perl 6

15

This works in any location where a block can be used, and can be

extended to multiple parameters as well:

my $callback = -> $x, $y { $x + $y };

say $callback(1, 2); # Output: 3

 Functions, Classes, and Methods
A function or subroutine is a piece of code with a list of formal parameters,

and optionally a return value:

sub double($x) {

 return 2 * $x;

}

say double(2); # Output: 4

If no return statement runs, the return value is the value of the last

expression, so we could have written this as sub double($x) { 2 * $x }

instead.

You can optionally declare a type for parameters (and for variables):

sub double(Numeric $x) { 2 * $x }

A class can have per-object storage, called an attribute, and code that is

attached to the object called a method:

class Point {

 has $.x;

 has $.y;

 method magnitude() {

 return sqrt($.x * $.x + $.y * $.y);

 }

}

my $p = Point.new(x => 5, y => 2);

say $p.x; # Output: 5

say $p.magnitude(); # Output: 5.3851648071345

Chapter 2 GettinG Started with perl 6

16

 Learning More About Perl 6
There are many resources for diving deeper into Perl 6.

Perl 6 Fundamentals: A Primer with Examples, Projects, and Case

Studies5 by Moritz Lenz (Apress Media, 2017) offers an example-driven

approach to exploring Perl 6.

Perl 6 Deep Dive6 by Andrew Shitov (Packt Publishing, 2017) is a more

feature-oriented guide to similar topics.

http://perl6intro.com/ is a free online resource for learning Perl 6,

available in several languages.

Last but not least, the official Perl 6 documentation at https://docs.

perl6.org/ provides a mixture of introductory and reference material, and

lets you search for built-in types, functions, methods, and operators.

2.5 Summary
We’ve seen several methods for installing the Rakudo Perl 6 compiler.

Once you’ve installed it, you can start an interactive Perl 6 shell by running

perl6 without any arguments, or perl6 script.p6 to execute a Perl 6

program.

We have also explored our first simple Perl 6 programs. Next we’ll dive

right into writing our first regexes.

5 www.apress.com/us/book/9781484228982
6 www.packtpub.com/application-development/perl-6-deep-dive

Chapter 2 GettinG Started with perl 6

https://www.apress.com/us/book/9781484228982
https://www.apress.com/us/book/9781484228982
https://www.packtpub.com/application-development/perl-6-deep-dive
http://perl6intro.com/
https://docs.perl6.org/
https://docs.perl6.org/
www.apress.com/us/book/9781484228982
www.packtpub.com/application-development/perl-6-deep-dive

17
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_3

CHAPTER 3

The Building Blocks
of Regexes
After all the talk and preparation, it’s time to look at some actual regexes.

3.1 Literals
The simplest elements of a regular expression are literals: strings that

exactly match themselves. For instance, the regex /perl/ matches any

string that contains the characters p, e, r, and l in exactly this order. So the

string "properly" matches this regex from the fourth character onward

(properly), but the string "superficial" does not, because it contains

other characters (ficia) between per and l.

Literals composed of only letters, the underscore _, and digits don’t

require any special syntax. Simply writing the letters and digits as part of the

regex makes up a literal. Other literals must be enclosed in quotes, either

single or double: /'2016-12-24'/ and /"2016-12-24"/ are similar, and both

match the string 2016-12-24. Since the two dashes are neither letters nor

digits, they need to be part of a quoted string to match literally. Single and

double quote pairs differ in their behavior regarding interpolation: variables

18

and code blocks delimited in curly braces {...} are interpreted in double

quotes, so the following regexes all match the string "3":

$_ = 3; # the string to be matched against

my $x = 3;

say "yes" if /"$x"/; # Output: yes

say "yes" if /"{1 + 2}"/; # Output: yes

whereas the regex /'{1 + 2}'/ only matches the literal string {1 + 2}.

Whitespace is ignored by default in Perl 6 regexes, so /perl/, /pe rl/,

and /p e r l/ are all equivalent (although the latter two produce a warning),

and match exactly the same strings. Inside quotes, whitespace is significant,

so /"pe rl"/ does not match the string properly because the string contains

no space character, but the string inside the quoted literal does.

3.2 Meta Characters vs. Literals
As we’ve seen in the previous section, alphanumeric characters in regexes

match themselves. All other characters can have some special meaning.

We’ve already seen that ' and " are special: they surround quoted strings.

We call such “special” characters metasyntactic, or meta characters.

The backslash \ makes a literal character metasyntactic, and vice versa. For

example, /d/ matches a literal d, but /\d/ matches a single digit. On the

other hand, + in a regex modifies the previous character, but /\+/ matches

a plus sign, +. The only exception is the # character, which can’t be made to

match literally by prepending a backslash, and must be quoted instead.

Not all meta characters have a special semantic meaning. For instance,

the exclamation mark (!) does not have a metasyntactic meaning, and Perl

6 produces an appropriate error message:

$ perl6 -e '/!/'

===SORRY!=== Error while compiling -e

Unrecognized regex metacharacter ! (must be quoted to match

literally)

Chapter 3 the Building BloCks of regexes

19

3.3 Anchors
Regexes search an entire string for matches. Sometimes this is not what

you want. Anchors match only at certain positions in the string, thereby

anchoring the regex match to that position.

The most common anchors are ^ and $. They match the start and end

of a string, respectively. The regex /^go/ matches all strings starting with

the letter g followed by o, for example gown. In contrast, /go$/ matches all

strings ending with the letter o preceded directly by g, for example tango.

Lastly, the regex using both anchors, /^go$/ only matches the string go.

Since whitespace is normally ignored, we could have written these

regexes as / ^ go /, / go $ / , or / ^ go $ /.

The regexes / g ^ / and / $ g / can’t match any string, because no

string has a character before its start or after its end. Generally, Perl 6 does

not warn or complain if you write such regexes, though future versions

might generate a warning. If you ever need a regex that can never match,

use <!> which achieves the same, but is more explicit.

A string can consist of multiple lines; the anchors ^^ and $$ match to

the start and end of a line, respectively. The $$ anchor is special in that it

matches before a newline character, or at the end of the string if there is no

trailing newline character:

Start-of-line positions that ^^ matches:

"⏏ab\n⏏de"
"⏏ab\n⏏de\n"

End-of-line positions that $$ matches:

"ab⏏\nde⏏"
"ab⏏\nde⏏\n"

Chapter 3 the Building BloCks of regexes

20

Anchors are zero-width regex elements. Hence they don’t “use up”

a character of the input string, that is, they do not advance the current

position at which the regex engine tries to match. A good mental model is

that they match between two characters of an input string (or before the

first, or after the last character of an input string).

There are more anchors built into Perl 6 (Table 3-1).

Word boundaries are boundaries between groups of alphanumeric

characters and the underscore (_), and any other character. For example,

the string "some-words_here" contains these word boundaries: "⏏some⏏-
⏏words_here⏏". Note that there are no boundaries around the "_"

character in this case; it’s treated as if it were a letter.

Table 3-1. Perl 6 Regex Anchors. ⏏marks positions where the anchor

matches.

Anchor Description Example Matches

^ start of string "⏏some\nlines"

^^ start of line "⏏some\n⏏lines"

$ end of string "some\nlines⏏"

$$ end of line "some⏏\nlines⏏"

<< left word boundary "⏏some ⏏words"

« left word boundary "⏏some ⏏words"

>> right word boundary "some⏏ words⏏"

» right word boundary "some⏏ words⏏"

<?wb> any word boundary "⏏some⏏ ⏏words⏏!!"

<!wb> not a word boundary "s⏏o⏏m⏏e w⏏o⏏r⏏d⏏s!⏏!"

<?ww> Within word "s⏏o⏏m⏏e w⏏o⏏r⏏d⏏s!!"

<!ww> not within word "⏏some⏏ ⏏words⏏!⏏!⏏"

Chapter 3 the Building BloCks of regexes

21

3.4 Predefined Character Classes
As long as you have to spell out each character to match, regexes are very

limited. Character classes loosen that requirement. For instance, the dot (.)

stands for any single character.

You can use this to great effect to solve crosswords. Suppose you are

searching for a five-letter word, and you know that the second letter is an e,

and the last two are rl. That could be pretty much anything, right?

Once you have a list of words, you can test each word against the regex

/ ^ .e.rl $ /, and so greatly reduce the number of words to consider.

Some Linux distributions come with a file /usr/share/dict/words,

which contains an English word list, one word per line. Searching through

it is a very short script:

for '/usr/share/dict/words'.IO.lines -> $word {

 say $word if lc($word) ~~ / ^ .e.rl $ /;

}

On my system (Ubuntu 16.04), this produces only two lines of output:

Pearl

pearl

They only differ in case, so for the sake of a crossword puzzle, they are

the same.

How did that script work? The code '/usr/share/dict/words'.IO

creates an IO::Path object, and calling the .lines method on it returns

a sequence of lines from the file. The for loop iterates over these lines,

which also happen to be words.

The command say $word prints the word, followed by a newline, but

only if the condition of the if postfix is met. lc($word) returns $word in

lowercase, and finally the rest of the line checks whether the lowercase

word matches against the regex / ^ .e.rl $ /.

Chapter 3 the Building BloCks of regexes

22

Since character classes are very useful, Perl 6 has many of them. Some

consist of a backslash followed by a single lowercase letter. In those cases,

the uppercase version is the negation (Table 3-2).

All of these classifications take into account the full Unicode character

repertoire; so \d does not just match the digits from 0 to 9, but also digits

from all scripts and variants such as ٤ -- ARABIC-INDIC DIGIT FOUR.

In Rakudo 2017.05, which supports Unicode version 9, 580 different

characters match the \d character class.

Table 3-2. Perl 6 Regex Predefined Character Classes

Character Class Description Ex. of Matches Ex. of Nonmatches

. any character a, 4, +

\d digit 1, ٤ a, +

\D not digit a, + 1, ٤

\w Word character a, 4, +, /, " "

\W not word +, /, " " x, 4, ٤

\s Whitespace " ", "\t" a, -, 4

\S not whitespace a, -, 4 " ", "\t"

\n logical newline "\n", "\c[LINE

SEPARATOR]"

"\t", +

\N not newline "\t", +, a "\n"

\h horizontal space " ", "\t" "\n", a, 4

\H not hor. space "\n", a, 4 " ", "\t"

Chapter 3 the Building BloCks of regexes

23

If you want to find all characters that match a character class, you

can iterate over all Unicode characters. Here is an example that lists all

characters matching \n:

for 0..0x1FFFF -> $c {

 if chr($c) ~~ /\n/ {

 printf "U+%05X - %s\n", $c, $c.uniname

 }

}

This produces the output

U+0000A - <control-000A>

U+0000B - <control-000B>

U+0000C - <control-000C>

U+0000D - <control-000D>

U+00085 - <control-0085>

U+02028 - LINE SEPARATOR

U+02029 - PARAGRAPH SEPARATOR

chr($c)1 translates the codepoint number $c to the actual character

behind it. printf2 is a routine for printing output formatted according

to a template, and uniname3 returns the name of the character from the

Unicode character database.

 User-Defined Character Classes
Instead of only relying on character classes baked into Perl 6 regexes, you

can also specify your own. The simplest way is to enumerate them between

<[and]>:

say 'perl' ~~ / <[aeiou]>/; # Output: ⌜e⌟

1 https://docs.perl6.org/type/Int#routine_chr
2 https://docs.perl6.org/type/Str#sub_sprintf
3 https://docs.perl6.org/type/Cool#method_uniname

Chapter 3 the Building BloCks of regexes

https://docs.perl6.org/type/Int#routine_chr
https://docs.perl6.org/type/Str#sub_sprintf
https://docs.perl6.org/type/Cool#method_uniname
https://docs.perl6.org/type/Int#routine_chr
https://docs.perl6.org/type/Str#sub_sprintf
https://docs.perl6.org/type/Cool#method_uniname

24

Inside the character class, nonalphanumeric characters lose their

special meaning, so / <[" ']> / matches either a single quote or a double

quote. Exceptions are spaces, which are simply ignored, the closing square

bracket] (which ends the character class and must be escaped with a

backslash to be part of a character class), and the backslash. To match either

an opening or a closing square bracket, use the regex / <[[\]]> /.

You can include predefined character classes inside a custom

character class: / <[\w $ -]> / matches a single character that’s either

a word character (\w), a hyphen, or the dollar sign.

Ranges of characters can simplify listing consecutive characters. For

instance, / <[0..9 a..f A..F]> matches a hexadecimal character, in

other words, any of these characters: 0123456789abcdefABCDEF.

You can negate a character class by prepending a minus sign (-). Thus,

to match any character except a double quote, use / <-["]> /. This is a

special case of a more general syntax that lets you mix and match positive

and negative character classes as well as predefined ones:

/ <[\d]-[78]+[abc]> /

This regex matches any digit except 7 and 8, but it also matches the

characters a, b, and c.

Finally, backslash escapes for single characters work inside character

classes just like they do in double-quoted strings, so <[\c[CHARACTER

TABULATION] x]> and <[\t x]> both match either the letter x or the

tabulator.

Chapter 3 the Building BloCks of regexes

25

 Unicode Properties
Perl 6 also offers access to character classes by referencing Unicode

properties and categories.4 To use the Letter property in a regex, you can

write <:Letter> to match a single character that is a letter, or <:!Letter>

as its negation—that is, a single character that is not a letter. Some of these

properties have short forms, like <:L> for <:Letter>.

These properties are not limited to the Latin alphabet you are currently

reading, but instead include the whole Unicode character database. So

<:Letter> may match a Greek, Cyrillic, or Hebrew letter, or a letter from

any script that has the concept of letters (Table 3-3).

4 http://unicode.org/reports/tr23/

Table 3-3. Selected Unicode Properties from

the General Category

Property Short Examples

Letter L aΦЊ

Uppercase_Letter Lu AЊ

Lowercase_Letter Ll xή

Mark M

Number N 8¾

Decimal_Number Nd 8

Symbol S $÷϶

Math_Symbol Sm +±∄
Punctuation P !@_

Chapter 3 the Building BloCks of regexes

http://unicode.org/reports/tr23/
http://unicode.org/reports/tr23/
http://unicode.org/reports/tr23/

26

3.5 Quantifiers
The regexes we’ve seen so far all match a fixed number of characters. This

is about to change. A quantifier controls how often the previous regex

element (an atom) matches, hence allowing for optional and repeated

elements.

The + quantifier matches one or more repetitions of the thing that

came before it. For instance, / ^ a+ $ / matches the strings a, aa, aaa,

aaaa, and so on.

Quantifiers bind very tightly, more so than concatenation of regex

elements, thus / ab+ / matches ab, abb, abbb etc. You can write that as

/a [b+]/ to remove any ambiguity.

If you want to match ab, abab, ababab instead, you can either use

quotes or brackets to force the + to apply to more than one character: both

/ [ab]+ / and / 'ab'+ / match these strings. The former is more generic,

since it applies not only to literals but also to other regex expressions.

/ [\d+ ',']+ / matches a list of digits, each followed by a comma.

There are more quantifiers, as summarized in Table 3-4.

Table 3-4. Perl 6 Regex Quantifiers

Quantifier Min Matches Max Matches

? 0 1

* 0 infinite

+ 1 infinite

**4 4 4

** 4..20 4 20

** 4..* 4 infinite

Chapter 3 the Building BloCks of regexes

27

The most general form is the ** RANGE quantifier, where the RANGE can

be of the form MIN..MAX for ranges with an upper bound, or MIN..* for

repetitions without an upper limit:

/ ^ a ** 4 $ /; # Matches exactly 4 a's

/ ^ a ** 2..4 $ /; # Matches between 2 and 4 a's

/ ^ a ** 5..* $ /; # Matches at least 5 a's

 Greedy and Frugal Quantifiers
Quantifiers are greedy by default: they go for the largest number of

repetitions that can possibly match.

You can observe this behavior by applying a regex to a string that has

more than one possible way to match:

say "<a> b <c>" ~~ /"<" .+ ">"/; # Output: ⌜<a> b <c>⌟

The regex here matches the full string, from the first < to the last >.

Should this not be what you want, you can rein in the quantifier’s

greediness by appending a question mark (?) to it:

say "<a> b <c>" ~~ /"<" .+? ">"/; # Output: ⌜<a>⌟

The Perl 6 community calls this version a frugal quantifier, although

this name isn’t widespread in the general regex literature. Some call it a

lazy quantifier.

In the case of the general quantifier, the ? goes before the range, like so:

**?1..5.

 Quantifiers with Separators
Parsing a list of things joined by a fixed separator is a common task. You

can perform it with / <thing> [<separator> <thing>]* /, or if a trailing

separator is allowed, / <thing> [<separator> <thing>]* <separator>?/.

More modifications are necessary if you want to allow an empty list.

Chapter 3 the Building BloCks of regexes

28

Perl 6 offers a shortcut: /<thing>+ % <separator>/, which matches

a list of <thing>s separated by a <separator>. If a trailing separator is

allowed, just change the % to a %%. This works for any quantifier. Thus,

<thing>* % <separator> also matches an empty string.

For example, a list of numbers separated by commas can be parsed as

say '1,24,5' ~~ / [\d+]* % ',' /; # Output: ⌜1,24,5⌟

When you combine a frugal quantifier with the separator feature, the

frugal ? comes first:

say '1,24,5' ~~ / [\d+]*? % ',' /; # Output: ⌜⌟

3.6 Disjunction
“Hi,” “Hello,” and “Hey” might all be acceptable greetings in English.

A regex matching such a greeting has to accept any of these three

alternatives:

/ Hi | Hello | Hey /

The vertical bar | separates alternatives or branches of a disjunction.

The branches don’t have to be literals as in this example; they can be any

regex.

Perl 6 being what it is, regex disjunctions come in two flavors. The

single vertical bar flavor matches the branch that produces the longer

match. If two or more matches are the same length, those branches

starting with literals win, so for the regex /a.|../ matching against the

string ab, the first alternative is preferred over the second.

If you double the vertical bar, the alternatives are tried from left to

right, and the first that matches is the winner:

say 'aab' ~~ / a+ | \w+ /; # Output: ⌜aab⌟
say 'aab' ~~ / a+ || \w+ /; # Output: ⌜aa⌟

Chapter 3 the Building BloCks of regexes

29

In the preceding example, a+ matches aa, while \w+ can match the

whole string, aab. In the case of | as the disjunction operator, the longer

match wins, hence the regex matches the whole string. With ||, the first part,

a+, matches successfully, so there is no need to even try the second branch.

When you write alternatives, you are allowed to keep an empty first

branch that Perl 6 ignores. This is purely for aesthetic reasons, so that you

can write

/

 | first branch

 | second branch

 | third branch

/

instead of the visually somewhat less balanced

/

 first branch

 | second branch

 | third branch

/

3.7 Conjunction
You can think of | and || as a logical OR. But what about the AND

operator? Most regex implementations omit it, but not so Perl 6. It’s spelled

& and, just like with disjunctions, there’s a sequential variant &&. The

difference between & and && will become apparent when we talk about side

effects in regexes in a later chapter.

Chapter 3 the Building BloCks of regexes

30

The & operator is useful when you have a regex and want to constrain

it further. As an example you might be searching for a phone number in

a text document and already have a regex for a phone number, but you

remember that there was a 17 sequence somewhere in the number you’re

looking for. You could search for such a number with this regex:

/ <phonenumber> & .* 17 .* /

The branches of an & conjunction must match the same part of the

string, so here the 17 is padded with .* to stretch the match of the right

branch to the match of the left branch.

You can apply the same technique to exclude certain characters from

matching. For instance, a phone number that doesn’t contain the digit 9

could be written as

/ <phonenumber> & <-[9]>* /

3.8 Zero-Width Assertions
How could you implement your own anchor?

The regex constructs we’ve talked about so far don’t allow you to do

that, because they all need to consume characters to decide whether or not

they match.

A zero-width assertion turns another regex into an anchor, making

them consume no characters of the input string. There are two variants:

look-ahead and look-behind assertions.5

5 Technically, anchors are also zero-width assertions, and they can look both ahead
and behind.

Chapter 3 the Building BloCks of regexes

31

The look-ahead assertion is spelled <?before regex>, and turns regex

into an anchor. Thus, if you want to match a number followed by a unit

(such as kB for kilobyte or MB for megabyte), but not the unit itself, you can

do so with such a regex:

say 'up to 200 MB' ~~ / \d+ <?before \s* <[kMGT]>? B > /;

Output: ⌜200⌟

Here, the regex \s* <[kMGT]>? B matches optional whitespace,

followed by the unit B, kB, MB, GB, or TB. The <?before ...> around

it makes the match only succeed if the regex for the unit matches

successfully. Note that the assertion did not advance the regexes’ position

in the string, so the string matching the unit is not included in the string

that the whole regex matches.6

You can negate the look-ahead by using a ! instead of a ?. So to match

a number that is not followed by such a unit, you can use the regex:

say 'up to 200 MB' ~~ / \d+ <!before \s* <[kMGT]>? B > /;

Output: ⌜20⌟

In this case, the regex matches just the string 20, because that’s a

number not followed directly by a unit. If you don’t want it to match this

input string at all, you can use word-boundary assertions around the

number:

say 'up to 200 MB' ~~ / « \d+ » <!before \s* <[kMGT]>? B > /;

Output: Nil

Instead of looking forward in the string, we can also write regexes that

look back from the current position. To match a number that comes after a

comma, you can write

say '200,50' ~~ / <?after \, > \d+ /; # Output: ⌜50⌟

6 If this doesn’t make sense to you, don’t worry; it will be clearer after the
discussion of match objects and Regex Mechanics in later chapters.

Chapter 3 the Building BloCks of regexes

32

Again, you can negate the condition by writing a ! instead of the ?:

say '200,50' ~~ / <!after \, > \d+ /; # Output: ⌜200⌟

Using positive and negative look-ahead and look-behind assertions,

you have the capabilities to reimplement the built-in anchors,7 and write

your own. For instance, ^, the start of the string, could also be written as

<!after .>; it only matches if no character comes before it. Likewise, the

left word boundary, «, could be written as <!after \w> <?before \w>. A

left number boundary would then be <!after \d> <?before \d>.

Note that <!after \w> and <?after \W>, though similar, are not quite

the same. The difference is that <!after \w> matches at the start of the

string, whereas <?after \W> does not, because it requires a nonword

character to match.

3.9 Summary
The basic building blocks of regexes are literals, character classes, anchors,

quantifiers, disjunctions (alternatives), and conjunctions (overlaps). They

form the basis for searching, validating, and parsing with Perl 6 regexes.

7 There should be no need for that. Still, it’s good to have that power.

Chapter 3 the Building BloCks of regexes

33
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_4

CHAPTER 4

Regexes and Perl 6
Code
Now that you know the basic building blocks of regexes, we’ll explore

different ways of using regexes in Perl 6 code.

4.1 Smart-Matching
The smart-match operator ∼∼ is a general comparison operator, and the

object on its right-hand side determines the semantics of the comparison.

For instance, if the right-hand side is a number, ∼∼ performs a numerical

comparison. If the right-hand side is a type, it checks if the left-hand side is

of that type (or a subtype thereof).

Of special interest to us is the case when the right-hand side is a regex.

In this case, the smart-match operator interprets the left-hand side as a

string and searches for a match using the regex:

my $str = "If I had a hammer, I'd hammer in the morning";

say $str ~~ /h.mm\w*/; # Output: ⌜hammer⌟
say $str ~~ /hummer/; # Output: Nil

34

The return value of the match is either Nil if the match failed, or

a match object1 if it succeeded. If you use a match object in a Boolean

context (like the conditional of an if statement), it evaluates to True

(whereas Nil evaluates to False); in a string context (or when forcing it

into string context by calling the .Str method), it evaluates to the part of

the string that the regex matched. Corner brackets (⌜ and ⌟) in the output

from say indicate a Match object.

Apart from smart-matching, you can also search for a match in a string

with the .match method2:

my $str = "If I had a hammer, I'd hammer in the morning";

say $str.match(/h.mm\w*/); # Output: ⌜hammer⌟

4.2 Quote Forms
So far we’ve seen regexes delimited by two slashes, /.../, but there are

other ways to write a regex. These are all equivalent:

/ a.b /;

rx/ a.b /;

rx{ a.b };

rx! a.b !;

regex { a.b }

If you use rx to write a regex, you can use almost any nonword

character as a delimiter (with the exception of whitespace, the colon (:),

and the hashmark (#)).

The forms introduced in the preceding return an object of type regex,

which you can store in a variable, or use in a smart-match operation.

1 https://docs.perl6.org/type/Match.html
2 https://docs.perl6.org/type/Str#method_match

Chapter 4 regexes and perl 6 Code

https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Str#method_match
https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Str#method_match

35

In addition, there is a form that uses m (for match) instead of rx.

Instead of returning a regex object, it immediately matches the regex

against the special variable $_:

$_ = 'abc';

if m/b./ {

 say "match";

}

Since the smart match operator ∼∼ automatically sets $_ to the

left-hand side of the expression, you can use m/.../ in a smart-match:

say "abc" ~~ m/b/; # Output: ⌜b⌟

4.3 Modifiers
Modifiers change the way regexes work. They come in two categories. If

you think of regexes as small programs that are compiled to byte code,3

then some modifiers affect the compilation and others affect the way you

call that program.

For example, the :global modifier (short form :g) belongs to the latter

category; it instructs the regex to search for all nonoverlapping matches in

the string:

my $str = "If I had a hammer, I'd hammer in the morning";

say $str.match(:global, /h.mm\w*/).join('|');

Output: hammer|hammer

3 Which, in fact, they are.

Chapter 4 regexes and perl 6 Code

36

An example of the first category would be :ignorecase (short form :i),

which instructs the regex engine to ignore case, so an uppercase character

in the regex can match its lowercase equivalent character, and the other

way around4:

say 'Hello, world'.match(/:i hello/); # Output: ⌜Hello⌟

As shown in the preceding, modifiers affecting the compilation of the

regex may be used inside the regex itself. Modifiers that affect the behavior

of the compiled regex always go on the outside.

Since the m/.../ form matches immediately, you can also add

modifiers to it that affect the runtime behavior of regexes:

say ('abc' ~~ m:g/./).elems; # Output: 3

Here m:g/./ returns a list of three matches, so the .elems method

returns the number 3. (See Table 4-1.)

4 Technically, there’s also title case, where special provisions are made when
uppercasing the first letter of each word, for example in a headline. The modifier
:ignorecase also works with title case.

Table 4-1. Modifiers That Affect the Compilation of a Regex, or Parts

Thereof

Long form Short form Description

:ignorecase :i Match regardless of letter case

:ignoremark :m Match regardless of mark or combining

character

:sigspace :s treat whitespace as significant

:ratchet :r disable backtracking

Chapter 4 regexes and perl 6 Code

http://unicode.org/faq/casemap_charprop.html#4

37

The :ignoremark or :m modifier allows you to match by the base character

only, and ignore diacritics and other marks that decorate a character. With :m

in effect, /a/ matches a, à, á, â, ã, ä, å, ā, and 22 other characters.

The :sigspace modifier makes whitespace in the grammar match

whitespace in the string, though not necessarily with a one-to-one

mapping. The :ratchet modifier disables backtracking, so if the regex

engine succeeds in matching a string in one way, it won’t try to do so again

in a different way. We will discuss both modifiers later in more detail.

These modifiers can also go into the middle of a regex, or be limited to

a part of a regex by a square bracket [...] group:

/ ab :i cd /; # match only the cd case-insensitively

/ [:i ab] cd /; # match only the ab case-insensitively

You can also disable a modifier by adding an exclamation mark after

the colon. So the last regex could have been written as /:i ab :!i cd/.

(See Table 4-2.)

Table 4-2. Modifiers That Affect the Runtime Behavior of a Compiled

Regex

Long form Short form Description

:global :g Find all matches that do not overlap

:overlap :ov Find all matches with different starting

positions

:exhaustive :ex Find all possible matches

:continue(5) :c(5) start searching from position 5

:pos(5) :p(5) start from, and anchor at, position 5

:x(5) attempt 5 matches, and fail if there are

fewer

:nth(5) return the 5th match

Chapter 4 regexes and perl 6 Code

38

All the forms that take an argument, here 5, can also accept a variable

as their argument. String positions start counting at zero from the start of

the string, just like string indexing with substr.5

If you search for multiple matches with :global, the search for the

second match starts where the first match ended. With :overlap, the

search for the second match starts one character after the first match

started, so the matched string from both matches can overlap. The

:exhaustive modifier finds all possible matches, even if several matches

start from the same position.

If you use the :continue and :pos modifiers without an argument,

they default to the position where the previous match left off.

4.4 Comb and Split
If you want to find all occurrences of a regex in a string, but you’re only

interested in the strings of the result (not in match objects), you can use

the comb6 method to find them:

my @numbers = "1308 5th Avenue".comb(/\d+/);

say @numbers; # Output: [1308 5]

If instead you are interested in the parts of a string that don’t match a

regex, the split7 method will work for you:

my ($city, $area, $popul) = 'Berlin;891.8;3671000'.split(/';'/);

say $area; # Output: 891.8

5 https://docs.perl6.org/type/Str#routine_substr
6 https://docs.perl6.org/type/Str#routine_comb
7 https://docs.perl6.org/type/Str#routine_split

Chapter 4 regexes and perl 6 Code

https://docs.perl6.org/type/Str#routine_substr
https://docs.perl6.org/type/Str#routine_comb
https://docs.perl6.org/type/Str#routine_split
https://docs.perl6.org/type/Str#routine_substr
https://docs.perl6.org/type/Str#routine_comb
https://docs.perl6.org/type/Str#routine_split

39

Here, the regex contains only a single literal; in this case, you can pass

the literal string directly to split, such as in 'Berlin;891.8;3671000'.

split(';');.

Both the comb and split methods accept a limit as a second, optional

argument:

my ($city, $rest) = 'Berlin;891.8;3671000'.split(';', 2);

say $city; # Output: Berlin

say $rest; # Output: 891.8;3671000

The split method is useful for parsing simple file formats, like

comma-separated files without quotes.

4.5 Substitution
You can use regexes not only to match text, but also to transform it.

With the subst8 method you can replace the part of a string that a regex

matched with another string. In the simplest case, the replacement is a

string constant:

say '42 eur'.subst(rx:i/ « eur » /, '€'); # Output: 42 €

If the replacement is the empty string, the substitution deletes the

matched string:

say '42 €'.subst(/\s+/, ''); # Output: 42€

As with regex matches, you can use modifiers together with

substitution. For example, :global replaces all occurrences of the regex

match (instead of just the first one, as happens without the modifier):

say '1 2 3'.subst(/\s+/, ''); # Output: 12 3

say '1 2 3'.subst(:g, /\s+/, ''); # Output: 123

8 https://docs.perl6.org/type/Str#method_subst

Chapter 4 regexes and perl 6 Code

https://docs.perl6.org/type/Str#method_subst
https://docs.perl6.org/type/Str#method_subst

40

If you want the replacement string to depend on the matched value,

you can pass a subroutine or a block as the replacement part, and it

receives the match object as its argument:

say "9 of spades".subst(/\d+/, -> $m { $m + 1 });

 # Output: 10 of spades

In the block of such a substitution, match variables like $0, $1, etcetera

(more on those in the next chapter) do not work, unless you explicitly

declare the match variable $/ as a parameter of this block:

say "9 of spades".subst(/(\d+)/, -> $/ { $0 + 1 });

 # Output: 10 of spades

There is also a syntactic variant for substitutions that modify a variable

in-place:

my $var = '1 2 3';

$var ~~ s:g/ \s+ //;

say $var; # Output: 123

Note that in this case the part between the first and the second slash

 (/) is a regex, but the part between the second and the third slash is a string.

This implies that whitespace is ignored in the first part, but relevant in

the second. Inside the replacement string, you can use $0, $1,

$2, etcetera to refer to captures (see the next chapter for more on captures):

my $var = '"fantastic", she said';

$var ~~ s:g/ \" (.*?) \" /«$0»/;

say $var; # Output: «fantastic», she said

The replacement part can also be a Perl 6 expression if you use [...]

or {...} to delimit the regex:

my $ad = 'Buy now! USD 10 per book. Prices double soon to 20.';

$ad ~~ s:g[\d+] = 2 * $/;

say $ad;

Chapter 4 regexes and perl 6 Code

41

where $/ refers to the match object. Note that in this case, the assignment

operator is used before the right-hand side.

This produces the output

Buy now! USD 20 per book. Prices double soon to 40.

When you substitute a zero-width match, the substitution becomes an

insertion operation:

my $input = "It's just a jump to the left.

And then a step to the right.";

$input ~~ s:g/ <?before jump> /⇑/;
$input ~~ s:g/ <?before left> /←/;

$input ~~ s:g/ <?after right> /→/;

say $input;

Here <?before ...> and <?after ...> turn the regexes inside them

into zero-width regexes, so the substitution commands do not replace the

matched text (like "jump"), but rather they insert the replacement part

before or after the match:

It's just a ⇑jump to the ←left.

And then a step to the right→.

You can combine normal and zero-width matches. For instance, this

statement substitutes all numbers that are followed by the unit MB or GB by 500:

my $input = '2 links with 75MB each';

say $input.subst(:g, / \d+ <?before <[MG]> B>/, 500);

 # Output: 2 links with 500MB each

Chapter 4 regexes and perl 6 Code

42

4.6 Crossing the Code and Regex Boundary
Regexes and regular Perl 6 code compile to the same byte code, and you

can mix Perl 6 code and regexes.

The most obvious interaction is storing regex objects in variables and

using them in regular code:

my $word-regex = /\w+/;

say "Hello, world" ~~ $word-regex; # Output: ⌜Hello⌟

This way you can give regexes a name, but also do all other things that

you can do with variables: put them into data structures, return then from

functions, and so on.

It works the other way around too. Variables can be part of a regex:

my $audience = 'world';

my $greeting = 'Hello';

if "Hello, world" ~~ / $greeting ', ' $audience / {

 # this branch is executed

}

If a variable contains a string, it is always matched literally; if it

contains a regex, it matches as a regex.

If you want to interpret the contents of a variable as a regex, you have

to include it in angle brackets:

my $audience = "\\w+";

my $greeting = 'Hello';

if "Hello, world" ~~ / $greeting ', ' <$audience> / {

 # this branch is executed

}

Chapter 4 regexes and perl 6 Code

43

This example also demonstrates that backslashes must be doubled

within quoted strings—in this case assigned to the variable $audience—

but not in regexes. In a double-quoted string, a backslash introduces an

escape sequence (such as \n for a newline, or \t for a tabulator). Using

the syntax <$audience> interprets the contents of variable $audience as a

regex.

Using an array variable inside a regex is equivalent to matching each

element of the array as an alternative; thus

my @numbers = 'one', 'two', 'three';

my $regex = / @numbers /;

is equivalent to writing

my $regex = / ['one' | 'two' | 'three'] /

except that when using an array variable, it’s easier to supply the values

programmatically.

Finally, you can include Perl 6 code blocks in regexes, simply by

embedding them in curly braces. This can be useful for building data

structures such as symbol tables during the execution of a regex.

For instance, we could count how many numbers appear in a string:

my $count = 0;

my $str = "between 23 and 42 numbers";

if $str ~~ / [\d+ { $count++ } \D*]+ / {

 say $count; # Output: 2

}

Chapter 4 regexes and perl 6 Code

44

Here the block { $count++ }, which increments the variable $count

by one, is executed after the \d+ part of the regex. While this is a somewhat

constructed use case, we will see very practical applications of code blocks

in regexes in later chapters.

Another good use case for blocks in regexes is adding print statements

for debugging, to see how a regex matched.

Here we attempt to match a floating-point number with a regex:

say '1.0e42' ~~ / ^ \d+ ['.' \d+]? [e|E \d+]? $ /;

This regex match fails, and to see how far the regex gets, you can

remove the question marks that make pieces optional and add some code

blocks to show the incremental progress:

'1.0e42' ~~ / ^

 \d+ { say "integer: '$/'" }

 ['.' \d+] { say "decimal place: '$/'" }

 [e|E \d+] { say "exponent: '$/'" }

 $ /;

which produces the output

integer: '1'

decimal place: '1.0'

exponent: '1.0e'

We can see that the last part of the regex matches only the e, not e42.

Closer scrutiny reveals that the alternative in [e|E \d+] extends to the \d+,

which wasn’t intended. Adding a level of grouping, [[e|E] \d+], fixes

the regex.

Chapter 4 regexes and perl 6 Code

45

The code blocks make use of the special variable $/, which contains

the match (or at least the partial match, as far as it has progressed at that

point).

These code blocks are executed purely for their side effects. You can

use the form <?{ ... }> instead to influence the regex match. If the code

inside that block returns a false value, the match fails9:

my $one-byte = / ^ \d ** 0..3 $ <?{ $/.Int <= 255 }> /;

for 0, 100, 255, 256, 1000 -> $num {

 if $num ~~ $one-byte {

 say $num;

 }

}

This example features a regex that matches a number between 0 and

255 (which might be useful for validating IPv4 addresses, for example), and

only prints the numbers 0, 100, and 255.

The $/.Int call converts the matched string to an integer, and the

comparison <= 255 returns True if and only if that number is at most 255.

9 Or at least it tries to match in a different way; see the discussion on backtracking

in Chapter 6 for more details.

Chapter 4 regexes and perl 6 Code

46

4.7 Summary
In this chapter, we’ve seen how to use regexes in Perl 6 code and the other

way around. You can store regexes in variables and also use variables

inside regexes.

In the next chapter, we will explore how to extract information from

regex matches or parts thereof.

Table 4-3. Ways to embed Perl 6 code into regexesx

Syntax Description

{ CODE } runs perl 6 code; no effect on regex match.

<?{ CODE }> Code needs to return a true value for the match to

succeed.

<!{ CODE }> Code needs to return a false value for the match to

succeed.

<{ CODE }> result of code is interpreted as a regex.

<$STRING> Interprets $STRING as regex source code.

Chapter 4 regexes and perl 6 Code

47
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_5

CHAPTER 5

Extracting Data
from Regex Matches
When you use a regex to validate input, it is enough to know whether a

given string matches the regex or not. In many other cases, we want to

extract more data from the string and the regex match.

For instance, if you want to parse an INI file (the configuration file

format common on Microsoft Windows), you might be interested in the

section headers and the key/value pairs inside a section; however, things

like the square brackets around the section headers aren’t so exciting.

5.1 Positional Captures
You can extract relevant data by instructing a regex to capture some data,

by surrounding a part of a regex with a pair of parentheses. The string that

this part of the regex matched is then available separately:

if "Hello, world" ~~ / (\w+) ', ' (\w+) / {

 say "Greeting: $0"; # Output: Greeting: Hello

 say "Audience: $1"; # Output: Audience: world

}

48

The captures are numbered from left to right, starting with zero.

The string that the regex within the first pair of parentheses matched is

available in the special variable $0, the string from the second pair of

parentheses in $1, and so on.

Since the numbering of these captures relies on their relative position

within the regex, we call them positional captures.

5.2 The Match Object
The result of each successful regex match is an object of type Match.1

When you match a regex with the smart-match operator ∼∼, the regex

object is also available in the special variable $/.

The match object offers a wealth of information about the regex match:

$/.orig contains the string that the regex matched against, $/.from and

$/.to the start and end positions of the match, and using it in a string

context (or by explicitly calling the .Str method on it) returns the matched

string.

But there is more: when you use the match object like an array, it gives

you access to the matches from the captures. $0 is actually an alias for $/

[0], $1 for $/[1], etcetera.

The captures themselves are Match objects again:

my $input = "There are 9 million bicycles in Beijing";

if $input ~~ /(\d+) \s+ (\w+)/ {

 say $0.^name; # Output: Match

 say $1; # Output: ⌜million⌟
 say $1.from; # Output: 12

 say $1.to; # Output: 19

}

1 https://docs.perl6.org/type/Match.html

Chapter 5 extraCting Data from regex matChes

https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Match.html

49

 Nesting of Captures
If you nest captures inside other captures, the structure of the match

objects corresponds to the nesting of the captures:

'abcdef' ~~ /(.) (b(c)(d(e))) /;

say $0.Str; # Output: a

say $1.Str; # Output: bcde

say $1[0].Str; # Output: c

say $1[1].Str; # Output: de

say $1[1][0].Str; # Output: e

The match object is in fact a tree of match objects.

As you can see in the preceding example, the numbering of captures is

per nesting level; there are five pairs of parentheses in the regex, but only

two of them are top-level, and so there are only $0 and $1 after a successful

match, no $2 or higher. Instead, each level of nesting also introduces

match numbers starting from 0 again. This is a departure from Perl 5 and

PCRE semantics, where the matches are continuously numbered.

 Quantified Captures
When a capture is subject to a quantifier, the corresponding capture in the

match object becomes an array2 of Match objects:

if "127.0.0.1" ~~ /(\d+)**4 % "."/ {

 say $0.elems; # Output: 4

 say $0[3].Str; # Output: 1

}

2 https://docs.perl6.org/type/Array

Chapter 5 extraCting Data from regex matChes

https://docs.perl6.org/type/Array
https://docs.perl6.org/type/Array

50

The only exception is the ? quantifier, which does not produce an array

for the capture.3 Instead its capture is a Match object when it matches once,

and Nil if it matches zero times.

5.3 Named Captures
When you have more than two or three captures, you can lose track of

which number refers to which capturing group. To relieve that burden, and

to make the code more robust to refactoring, you can use named captures

instead:

my $str = 'Hello, World';

if $str ~~ / $<greeting>=[\w+] ', ' $<audience>=[\w+] / {

 say $<greeting>.Str; # Output: Hello

 say $<audience>.Str; # Output: World

}

$<thename> refers to the named capture both inside and outside the

regex. Inside the regex, you can assign to it, outside you can access the

corresponding match object. Outside the regex, $<thename> is actually a

shortcut for a name-based access of the match object, $/<thename> or

$/{ 'thename' }. This scheme for accessing named captures follows the

same syntax as accesses to hash elements.

If you use the same name twice (or more often) within the same regex,

the capture becomes an array again.

3 Early versions of Perl 6 created an array capture for all quantified captures, even
with the ? quantifier. It confused most users.

Chapter 5 extraCting Data from regex matChes

51

In a later chapter, we’ll talk about named regexes in greater detail. For

now it suffices to say that an easier way to create a named capture is to

simply call a regex by name:

my regex byte {

 \d ** 1..3

 <?{ $/.Int <= 255 }>

}

my $str = '127.0.0.1';

if $str ~~ / ^ <byte> ** 4 % '.' $ / {

 for $<byte>.list -> $byte {

 say $byte.Str;

 }

}

Here <byte> calls the named regex byte and automatically captures

the string matched by this subregex under the same name, byte. You can

rename the capture with the syntax <alias=originalname>:

my $str = 'Hello, World';

my regex word { \w+ };

if $str ~~ /<greeting=word> ', ' <audience=word>/ {

 say $<greeting>.Str; # Output: Hello

 say $<audience>.Str; # Output: World

}

Chapter 5 extraCting Data from regex matChes

52

5.4 Backreferences
Backreferences allow you to access a capture inside the regex, matching

the string that a previous part of a regex captured. There are several

cases where this can be useful, such as when searching for accidentally

duplicated words in a text. The first attempt would be a regex like this:

/ (\w+) \s+ $0 / This regex matches a word (\w+) and captures it into $0,

followed by whitespace (\s+), followed by the original word ($0). However

this doesn’t work as intended. Used against the string the next thing, it

matches t t, because \w+ is happy to match just a single character.

To make it work, we can restrict matches to whole words by including

word boundary assertions: / « (\w+) \s+ $0 » / (remember that «

matches a left word boundary and » matches a right word boundary).

Now if you test it against the string "the quick brown fox jumps

over the the lazy black dog", it correctly matches the doubled "the".

Backreferences also work with named captures; the previous example

could have been written as /« $<word>=\w+ \s+ $<word> »/.

Another common use case for backreferences is finding something

like a quoted string, where you don’t care much about the actual quoting

character as long as it’s the same on both ends.

Note that backreferences are firmly outside the world of regular

languages as defined in computer science; you need more powerful

formalisms for that.

 Excursion: Primality Test with Backreferences
This section is not relevant to any practical application, but gives insight

into the crazy things that people have done with regexes. You can safely

skip it if you’re reading this merely for practical reasons.

A prime number is an integer that is only divisible by number 1 and by

the number itself.

Chapter 5 extraCting Data from regex matChes

53

You can use regexes to test if a number is a prime number.4 First we

have to encode the number by creating a string of identical characters (for

example a), where the number of characters in the string is identical to the

number. So 2 would be encoded as aa, 5 as aaaaa, and so on. In Perl 6, we

can do this with the string repetition operator, x:

my $encoded = 'a' x 5;

We then try to find a factor larger than one that evenly divides the

number. In our encoded string, this is a substring of at least two characters

which, when repeated often enough (but at least once), reproduces the

original encoded string:

for 2..15 -> $number {

 my $encoded = 'a' x $number;

 if $encoded ~~ / ^ (a ** 2..*) $0+ $ / {

 say "$number is not a prime, a factor is ", $0.chars;

 }

 else {

 say "$number is a prime";

 }

}

This produces the following output:

2 is a prime

3 is a prime

4 is not a prime, a factor is 2

5 is a prime

6 is not a prime, a factor is 3

7 is a prime

4 This primality test is commonly attributed to Abigail, a prolific Perl
hacker. See for example http://neilk.net/blog/2000/06/01/
abigails-regex-to-test-for-prime-numbers/.

Chapter 5 extraCting Data from regex matChes

http://neilk.net/blog/2000/06/01/abigails-regex-to-test-for-prime-numbers/
http://neilk.net/blog/2000/06/01/abigails-regex-to-test-for-prime-numbers/

54

8 is not a prime, a factor is 4

9 is not a prime, a factor is 3

10 is not a prime, a factor is 5

11 is a prime

12 is not a prime, a factor is 6

13 is a prime

14 is not a prime, a factor is 7

15 is not a prime, a factor is 5

For instance, if $number is 6, $encoded becomes "aaaaaa". The regex

engine then finds a match when the first group, (a ** 2..*), matches

three a’s, aaa. Accordingly, $0+ produces another three a’s, totaling six a’s.

In the case of a prime number, the regex engine is unable to find such a

partition, causing the match to fail.

Since the ** quantifier is greedy, the regex engine finds the largest

prime factor first, so it identifies 5 as a prime factor of 10. If you change it to

the **? quantifier (so the regex becomes / ^ (a **? 2..*) $0+ $ /), it

finds the smallest prime factor.

Note that this is a very inefficient way to test for primality, mostly

because the regex engine is not optimized for this kind of task, uses a very

inefficient number representation, and has to try all possible factors, even

ones that would be easy to rule out by a smarter algorithm.

Nonetheless, the regex engine manages to test numbers up to fifty

thousand in a few seconds. Perl 6 has a built-in way to test for primality

that is much faster and less memory hungry:

say 50101.is-prime; # Output: True

Chapter 5 extraCting Data from regex matChes

55

5.5 Match Objects Revisited
As mentioned before, successful regex matches return match objects. In

addition to the position and length of the matched substring, the match

object also stores all positional and named captures. To get a list of all

positional captures, you can call the .list method. Likewise, the .hash

method returns the named captures as a hash. A hash is a data structure

with mappings from names or keys to values; Python calls it a dict or

dictionary, JavaScript an object.

When a match object is printed with the say function, the output is the

matched string delimited by ⌜⌟:

say "abc" ~~ /../; # Output: ⌜ab⌟

If the regex includes captures, they are printed on separate lines,

indented by a single space. Thus

say "abc" ~~ /.(.)(.)/

produces the output

⌜abc⌟
 0 => ⌜b⌟
 1 => ⌜c⌟

where 0 and 1 are indices of the captures. Nested captures produce

more indentation, so "abc" ∼∼ /.(.(.))/ prints

⌜abc⌟
 0 => ⌜bc⌟
 0 => ⌜c⌟

Chapter 5 extraCting Data from regex matChes

56

Named captures are distinguished simply by their name, hence say

"abc" ∼∼ /.(.$<char>=[.])/ prints

⌜abc⌟
 0 => ⌜bc⌟
 char => ⌜c⌟

5.6 Summary
Captures allow you to extract data from successful regex matches. You

can instruct the regex engine to capture data by adding a pair of round

parentheses around a part of a regex, by using the $<name>=[...] syntax,

or by calling a named regex: <name>.

Both regex matches and captures produce match objects; the topmost

match object thus becomes a tree of submatches.

Backreferences allow you to match exactly what a previous part of a regex

matched, and you can abuse that feature to build a simple primality test.

Chapter 5 extraCting Data from regex matChes

57
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_6

CHAPTER 6

Regex Mechanics
Regexes can seem magical at times. They often have many different ways of

matching a string. How are matches found? Which one is found first?

This chapter demystifies the magic by explaining the mechanics that a

regex engine uses. Understanding these mechanics is key to writing robust

regexes that match what you want, no more and no less.

Our discussion is slightly complicated by the two different paradigms

implemented in Perl 6 regexes: declarative matching with finite state

machines, and the more powerful backtracking engine.

6.1 Matching with State Machines
When computer scientists talk about regular languages, they also describe

a mechanism to efficiently recognize whether a particular string is part

of the language. In Perl 6 this is simply if the string matches the regular

expression.

 Deterministic State Machines
The mechanism used to recognize matching strings is a finite state

machine. It is a set of states with arrows between them. Each arrow is

labeled with a single character. The machine reads each character from

the input string separately and follows the arrow with the same label as the

current character. If there is no arrow labeled with the current character,

the match fails immediately.

58

Some states are labeled as accepting states. After the last character

from the input string is read, the match succeeds if the final state is an

accepting state. Otherwise, it fails (Figure 6-1).

Consider the example automaton. The starting state is A0, and from

there on it needs to read the character a to get to the accepting state A1. It

can then read a b followed by a c to get back to the accepting state, so the

strings it accepts are the same as the regex / ^ a [bc]* $ /.1 Let’s call

this automaton A.

For each state, there is at most one arrow leaving that state with a

certain character. Hence, the machine is in only one state at a time, and we

call it a deterministic finite automaton, or DFA for short.

A DFA can be implemented very efficiently in code. For each state, you

need a lookup table that maps incoming characters to the next state, which

means you only have to spend a fixed number of steps on each character of

the input string.

As demonstrated by the previous automaton, you can use it to

match literals and you can implement the * quantifier with arrows going

backward. It also supports alternatives, although they can be a bit trickier.

1 The finite state machine formalism assumes that you always want to match the
whole string, hence the anchors. If you want to just search in a string, you have to
append and prepend .* to your regex.

Figure 6-1. A simple deterministic finite automaton. The accepting
state A1 is marked by a doubled circle.

Chapter 6 regex MeChaniCs

59

First, let’s modify the original automaton to match / ^ a [bca]* $ /

instead (Figure 6-2).

We call this automaton B.

Now we want to construct an automaton for matching the strings that

either A or B matches. We can do this by creating an automaton that runs

both automata at the same time. The starting states from the two automata

are A0 and B0, so let’s call our new starting state A0B0. From this starting

state, reading an a moves automaton A from A0 to A1 and automaton B

from B0 to B1, so the next state is A1B1. Since at least one of the original

states is accepting, so too is A1B1 (Figure 6-3).

The third state is pretty obvious as well: reading a b from either A1 or B1

moves us to A2 and B2, respectively (Figure 6-4).

Figure 6-2. A simple automaton for matching the regex / ^ a [bca]* $ /

Figure 6-3. Partially constructed automaton for matching A or B,
first step

Chapter 6 regex MeChaniCs

60

Now it starts to get interesting: on reading character c, A transitions to

state A1, but B to B0. We need a state for that, and we call it A1B0. Because

A1 is an accepting state, A1B0 is also accepting (Figure 6-5).

What happens if the next character is an a? Automaton A rejects the

input, and automaton B moves to state B1. So we can duplicate automaton

B at this point (Figure 6-6).

Figure 6-4. Partially constructed automaton for matching A or B,
second step

Figure 6-5. Partially constructed automaton for matching A or B,
third step

Figure 6-6. Partially constructed automaton for matching A or B,
fourth step

Chapter 6 regex MeChaniCs

61

Likewise, reading character b from state A1B0 makes automaton B fail

and moves automaton A into state A2. Thus we can copy states A1 and A2

into the new automaton (A0 is not reachable from there), and we get our

final result (Figure 6-7).

This mechanism is called the Powerset construction,2 because the set

of new states is the powerset of the source automata.

In our example, the resulting automaton has nine states, whereas

A and B only had three states each. If we had to build the disjunction of

several automata, in the worst case the number of states in the resulting

automaton is proportional to the product of the number of states of each

input automaton. Or phrased differently, the number of states can grow

exponentially with the number of characters of the regex we want to

model.

2 https://en.wikipedia.org/wiki/Powerset_construction

Figure 6-7. Fully constructed automaton for matching A or B

Chapter 6 regex MeChaniCs

https://en.wikipedia.org/wiki/Powerset_construction
https://en.wikipedia.org/wiki/Powerset_construction

62

 Nondeterministic State Machines
This state explosion limits the practicability of DFAs in regex matching

code. Instead, regex implementations often use nondeterministic finite

automata, or NFAs for short. NFAs allow multiple arrows labeled with the

same character to depart from the same state. The nondeterministic part

is that the regex engine has to guess which arrow to follow, or it simply

follows all of them, leading to a model where the machine can be in more

than one state at a time.

If you think of the states and labeled arrows as a game board, starting a

match places a chip on the initial state. When you read an input character,

you follow all relevant arrows and place a chip on each target state. Finally,

you remove the chips from the previous states.

To make it even easier to construct NFAs, people often allow so-called

epsilon (ε) transitions. The NFA follows these arrows without consuming an

input character. Or phrased differently: if you have an ε transition from state

C0 to C1, you place a second chip on C1 as soon as you place one on C0.

With these ε transitions, creating a disjunction of two automata becomes

easy. You just add a new starting point, C0, and add ε transitions from it to

the starting points of the automata you combine (Figure 6-8). Voilà:

Chapter 6 regex MeChaniCs

63

Deterministic and nondeterministic finite automata are equally

powerful. For each NFA, you can construct a DFA that matches exactly the

same strings. In reverse, every DFA is also an NFA, because the rules for

NFAs are looser than for DFAs.

Building an NFA from a regex is typically much faster (and can use

significantly less memory) than building the corresponding DFA. At

runtime, the NFA might have to advance multiple states (think chips in the

previous analogy), so in the worst case, the number of steps it needs to take

is proportional to the number of NFA states per input character.

Figure 6-8. Nondeterministic finite automaton for matching A|B

Chapter 6 regex MeChaniCs

64

Perl 6 uses NFAs to match most of the regex features we’ve discussed so

far, including literals, quantifiers, conjunctions, and disjunctions, as well

as character classes (which are just a convenient syntax for disjunctions).

Regex features that an NFA can’t handle are the sequential disjunction

(||) and conjunction (&&), anchors, backreferences, code blocks, and code

assertions, as well as some features that we will discuss later: regexes with

explicit backtracking control, recursion, look-ahead, and look-behind.

6.2 Regex Control Flow
In cases where the regex engine cannot use an NFA, or where

understanding the NFA doesn’t provide much insight into how a regex

will match, it is useful to understand the control flow of the general regex

engine.

The first rule is that the regex engine always starts at the start of a string

and prefers the leftmost match that is possible.

The second rule is the rule of greediness: the regex is evaluated from

left to right and each part that can match a variable number of characters

tries to match the longest substring it can.3

Thus, if you have the regex /\w+ .*/ and run it against the string abcd,

the \w+ matches the whole string, leaving the .* to successfully match the

empty string. A match where \w+ matched the first character only and .*

the rest would be equally allowed, but doesn’t happen, because it violates

the rule that leftmost parts of the regex match as much as they can.

3 With lazy or frugal quantifiers, it tries to match the shortest substring it can.

Chapter 6 regex MeChaniCs

65

If you try to match a quoted string with a simple regex / \" .* \" /, it

is likely that it matches more than you might have expected:

my $str = 'Amanda sighed. "It was madness", she said. '

 ~ '"Sheer madness"';

if $str ~~ / \" .* \" / {

 say $/.Str;

}

This produces the output

"It was madness", she said. "Sheer madness"

because the .* doesn’t care that you didn’t intend it to match past the

boundaries of the first quote; it simply matches as much as it can, while

still making the whole match succeed.

6.3 Backtracking
The rule of greediness doesn’t always produce a match on the first attempt.

In the previous example, the .* first matched all it could, including the

final quote in the input string. The final quote in the regex had nothing to

match, leading to a failure.

Instead of giving up, the regex engine started to backtrack: it went

back to the previous quantifier (the * in .*), and made it match one less

repetition. Only then could the quote in the regex find the quote in the

input string, making the whole regex match successfully.

If there are multiple regex elements that could match in different ways,

backtracking tries all options from the last element, and if they all fail,

tries one more option from the second-to-last element. It then explores

all variations of the last element in that configuration and continues

attempting from previous elements in its search for a match. If you think of

it as a search tree, it’s a depth-first search.

Chapter 6 regex MeChaniCs

66

Let’s consider a regex with two variable parts, combined with a search:

'mabracadabra' ~~ / (.+a) (.*) $0 /;

This starts with the first group (.+a) matching the full string; the

second group, (.*), matches the empty string; the final part, $0, fails to

match. Consequently, backtracking kicks in and asks the second group

to match fewer characters, which it can’t; so it goes back to the first

group and asks it to match fewer characters. Now the first group matches

mabracada and the .* matches the three remaining characters. Still, the

final group fails to match, so .* gives up another character and the last

group continues to fail.

This cycle repeats until the first group matches only two characters, ma.

Even in this configuration, the rest of the regex can’t match successfully.

The regex engine is out of options, so it goes to the mechanism of last

resort: it tries to start the match one position to the left, at the second

character.

Starting from the second character, the first group tries again to match

the whole remaining string, abracadabra. We can visualize this by adding a

code block after the second part of the regex:

'mabracadabra' ~~ /(.+a) (.*) { say "0: '$0'; 1: '$1'" } $0 /;

This produces the following output:

0: 'mabracadabra'; 1: ''

0: 'mabracada'; 1: 'bra'

0: 'mabracada'; 1: 'br'

0: 'mabracada'; 1: 'b'

0: 'mabracada'; 1: ''

0: 'mabraca'; 1: 'dabra'

0: 'mabraca'; 1: 'dabr'

0: 'mabraca'; 1: 'dab'

0: 'mabraca'; 1: 'da'

Chapter 6 regex MeChaniCs

67

0: 'mabraca'; 1: 'd'

0: 'mabraca'; 1: ''

0: 'mabra'; 1: 'cadabra'

0: 'mabra'; 1: 'cadabr'

0: 'mabra'; 1: 'cadab'

0: 'mabra'; 1: 'cada'

0: 'mabra'; 1: 'cad'

0: 'mabra'; 1: 'ca'

0: 'mabra'; 1: 'c'

0: 'mabra'; 1: ''

0: 'ma'; 1: 'bracadabra'

0: 'ma'; 1: 'bracadabr'

0: 'ma'; 1: 'bracadab'

0: 'ma'; 1: 'bracada'

0: 'ma'; 1: 'bracad'

0: 'ma'; 1: 'braca'

0: 'ma'; 1: 'brac'

0: 'ma'; 1: 'bra'

0: 'ma'; 1: 'br'

0: 'ma'; 1: 'b'

0: 'ma'; 1: ''

0: 'abracadabra'; 1: ''

0: 'abracada'; 1: 'bra'

0: 'abracada'; 1: 'br'

0: 'abracada'; 1: 'b'

0: 'abracada'; 1: ''

0: 'abraca'; 1: 'dabra'

0: 'abraca'; 1: 'dabr'

0: 'abraca'; 1: 'dab'

0: 'abraca'; 1: 'da'

0: 'abraca'; 1: 'd'

0: 'abraca'; 1: ''

Chapter 6 regex MeChaniCs

68

0: 'abra'; 1: 'cadabra'

0: 'abra'; 1: 'cadabr'

0: 'abra'; 1: 'cadab'

0: 'abra'; 1: 'cada'

0: 'abra'; 1: 'cad'

After trying 46 different configurations, it finds a match: starting at the

second character, the (.+a) matches abra, the (.*) matches cad, and the

$0 again matches abra.

You can clearly see that the later parts of the regex vary more rapidly

than the earlier parts of a regex, judging by what they match. The

advancement of the starting position of the regex is even slower, and is in

fact the slowest variation there is.

The regex engine never backtracks into a zero-width assertion (look-

ahead and look-behind assertions). For those, it is only relevant whether

they match at all, not how they match, since a successful match never

consumes any characters of the input string (it matches the empty string).

6.4 Why Would You Want to Avoid
Backtracking?

Backtracking is the Secret Magic Sauce™ that makes regexes work. It makes

the computer work hard on your behalf to find a match in the input string.

But there are cases where backtracking does more harm than good;

thus, Perl 6 (and some other regex implementations) offer ways to disable

backtracking, or reduce how much work it does.

 Performance
One reason is performance: backtracking can be computationally

intensive, and if you already know that a certain match (or part of a match)

will fail, telling the computer to do less work speeds things up.

Chapter 6 regex MeChaniCs

69

A simple example is this regex match:

"aaaaaa" ~~ /^ (a+) <[bcd]> /;

You can see that this match fails, because there is no b, c, or d in the

input string. However, the regex engine isn’t smart enough to know that

it must search this way for optimal performance. Instead it first tries to

match all a’s in the input, then one fewer, and so on, before declaring

defeat. Again, we can track its progress through an embedded code block.

say "aaaaaa" ∼∼ /^(a+) { say $0 } b/ produces this output:

⌜aaaaaa⌟
⌜aaaaa⌟
⌜aaaa⌟
⌜aaa⌟
⌜aa⌟
⌜a⌟
Nil

Being smarter in some ways than the computer, we can help it by

telling it to never give up any a’s it matched. say "aaaaaa" ∼∼ /^(a+:)
{ say $0 } b/ produces a much shorter output:

⌜aaaaaa⌟
Nil

The colon (:) behind the quantifier tells it not to backtrack for this

quantifier. It works not only for all quantifiers, but also for disjunctions.

The quantifier together with the backtracking control colon is called a

possessive quantifier, because the quantifier never gives up what it once

possessed.

A second way to disable backtracking is to use the :ratchet (or :r)

modifier, which you can also use inside a group [...] or a capture (...).

In that case, the effect of the modifier stretches from the point of use to the

closing bracket of the group.

Chapter 6 regex MeChaniCs

70

 Correctness
Backtracking can sometimes lead to unexpected match results. This

happens because part of a regex matched the way you intended it to, and

then a later part failed to match. The first part then starts to backtrack and

match in an unexpected way.

Jan Goyvaerts shares an example on the regex guru blog,4 paraphrased

here and adapted to Perl 6 regex syntax.

When you try to match a pair of HTML tags, like the string

some text, you could use a regex like this:

my $html-re = rx:ignorecase{

 '<' $<tag>=[<[a..z]>+] # opening tag

 <-[>]>* # attributes within opening tag

 '>'

 (.*) # content between opening and

closing tags

 '</' $<tag> '>' # closing tag

};

say 'more text link text bla' ~~ $html-re;

This seems to work, but erroneously also matches mismatched tags

such as <abc>. Here the regex engine first tries to match with $<tag>

being abc, fails to find the match, and then backtracks. In the second

iteration, it tries with ab, fails, and succeeds in the third iteration with

$<tag> being a.

4 http://www.regexguru.com/2008/04/unintended-backtracking-can-bite-you/

Chapter 6 regex MeChaniCs

http://www.regexguru.com/2008/04/unintended-backtracking-can-bite-you/
http://www.regexguru.com/2008/04/unintended-backtracking-can-bite-you/

71

One could argue that the regex is flawed and that it should have a word

boundary assertion after matching the opening HTML tag. But still, our

intuition about regex matches often coincides with the greedy nature of

quantifiers, not with the more nuanced matches that backtracking can

produce.

When writing a regex or a parser, ask yourself about the individual

elements: if this part of the regex finds a match, and then fails later, do

I want it to try a different match? Imagine you’re writing a parser for a

programming language and write a regex that matches an identifier.

Should the match ever give up a character or two? Probably not. In a case

like this, it’s a good idea to add a colon (:) to prevent it from backtracking:

/ $<tag>=[<[a..z]>+:] /

6.5 Frugal Quantifiers and Backtracking
As mentioned in an earlier chapter, there are frugal or lazy quantifiers that

try to match as little as possible. These always backtrack, even with the

:ratchet modifier enabled.

When a greedy quantifier tries to match as much as possible, even

without backtracking, there is a search going on, by applying the quantified

regex element and seeing if it matches. On the other hand, a frugal

quantifier always starts with the minimal number of matches, and only

backtracking can bring it to match more. So without backtracking, /a??/

or /a*?/ would match just the empty string, /a+?/ just a single a, and so

forth.

6.6 Longest Token Matching
Disjunctions or alternatives with | prefer the branch that matches the

longest string. We call this longest token matching.

Chapter 6 regex MeChaniCs

72

This is important when parsing, because it matches the way we

intuitively recognize text ourselves. For instance, the Perl 6 expression

++$var could be parsed as the prefix operator ++ (which increments the

following variable by one), followed by the variable $var. Or it could

be parsed as +(+$var), applying the prefix + operator (which converts

its argument to a number) to $var, and then applies the same operator

again to the result. The Perl 6 grammar is based on regexes, and it knows

to prefer the first variant (a single ++ operator), because it produces the

longest match when trying to parse a prefix operator.5

To be able to match the longest alternative efficiently, Perl 6

determines which parts of a regex form a declarative prefix. It then

constructs an NFA to match this declarative prefix. Once that’s done, the

rest of the general regex engine kicks in and carries on, until the next

declarative section is found.

The declarative prefix is limited to elements that an NFA can model:

literals, character classes, disjunctions, conjunctions, and greedy

quantifiers. In the case of named regex calls, the declarative prefix from the

named regex is merged into the one from the calling regex, except when it

leads to recursion.

We can illustrate this by inserting a code block {} (which is not

declarative) to limit the length of the alternative (Figure 6-9).

5 This is another case where you don’t want backtracking to kick in: once the parser
has recognized a ++ operator, you don’t want it to change its mind and interpret
the two characters as separate operators.

Chapter 6 regex MeChaniCs

73

say "abc" ~~ /ab | a.* /; # Output: ⌜abc⌟
say "abc" ~~ /ab | a {} .* /; # Output: ⌜ab⌟

Here in the regex ab | a.*, the second branch matches the whole

string, which is longer than what the first branch matches.

By inserting the empty block {}, the longest token matching is

effectively limited to the regex ab | a. Now the first branch, ab, produces

the longer match (because the declarative part of the second branch

matches only "a"), and the regex engine commits to this decision,

matching just "ab". Only if a later regex element fails to match (and

backtracking is enabled) will the regex engine reconsider this decision.

6.7 Summary
Computer science gives us tools for matching regular languages efficiently

through finite automata. Even so, regular languages are only a subset of

what regexes can describe. The rest is processed by using backtracking,

which prefers leftmost matches over matches to the right, and longer

matches over shorter matches.

Figure 6-9. The code block {} is considered procedural, thereby
limiting the declarative prefix of the regex

Chapter 6 regex MeChaniCs

75
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_7

CHAPTER 7

Regex Techniques
The previous chapters have introduced many regex constructs that you

can use to build your regexes, and have explained how they work. But that

alone doesn’t tell you how to structure your regex for the best results. This

chapter provides such guidance.

7.1 Know Your Data Format
This might be obvious, but is still too often overlooked. To be able to write

a regex for some data format, you need to know its rules. That is, if there

are rules. If not, you might need enough input data to come up with rules

yourself and to test them against the data. Then, you need to know about

the context of the validation.

 Well-Defined Data Formats
Let’s talk about the case of defined data formats first. Even if you think you

know the data format pretty well, it’s worth reading the specification. Often

there are little-used edge cases that might be worth considering.

For instance, a string like johndoe (without any @ sign) is a valid e-mail

address for local delivery. If you’re writing an e-mail address regex for input

validation, should you allow it? The answer depends on the context. If you

are developing an application that is used purely internally in a corporation,

it might make sense to allow it. In a public web application, much less so.

76

Staying with e-mail addresses, did you know that the local part can

be quoted? Or that the domain part can be an IP address, optionally in

square brackets? Yes, "somebody"@[93.184.216.34] and some+body@

[IPv6:2001:db8::1] are both valid e-mail addresses.

Some data formats come with specifications for their format. For example

JSON, the JavaScript Object Notation, has parsing rules on its homepage.1 In

this case, it is often a pragmatic choice to reuse the work that the authors have

put into creating those rules and simply translate them into Perl 6 syntax.

 Exploring Data Formats
If you don’t have the luxury of a ready-made specification, you must come

up with your own rules. The best way to come up with such rules mirrors

the scientific method: first you come up with a hypothesis, and then you

test it. You iterate until you are satisfied with the result.

Testing a hypothesis about a data format can take several forms. If

you know of another program that deals with the same data format, you

can modify existing files in that format, and then load them with the other

program. If that is not an option, you should try to collect as much real-

world data as you can in the same format, and then search through that

corpus to test your hypothesis.

Let’s suppose you want to write a regex that parses an INI file, the

configuration format commonly used on the Microsoft Windows platform.

In its basic form, it looks like this (example taken from the Wikipedia

page on INI files2):

; last modified 1 April 2001 by John Doe

[owner]

name=John Doe

organization=Acme Widgets Inc.

1 http://json.org/
2 https://en.wikipedia.org/wiki/INI_file#Example

Chapter 7 regex teChniques

http://json.org/
https://en.wikipedia.org/wiki/INI_file#Example
https://en.wikipedia.org/wiki/INI_file#Example
http://json.org/
https://en.wikipedia.org/wiki/INI_file#Example

77

[database]

; use IP address in case network name resolution

; is not working

server=192.0.2.62

port=143

file="payroll.dat"

The rules look pretty simple: the file consists of a list of sections. Each

section starts with a section name in square brackets and contains key/

value pairs separated by an equals sign (=). Empty lines, and lines starting

with a semicolon (;), are ignored.

Now it’s time to ask some more questions:

• Can the list of sections be empty (that is, is an empty

file a valid INI file)?

• Can a section be empty (not contain any key/value

pairs)?

• Are comments allowed after a key/value pair? For

instance, if you write port=443; only one not

blocked by firewall, is the comment part of the value

or not?

• Where is whitespace allowed? Are [database] or

port = 443 valid?

• What’s allowed in a section name? For example

whitespace, or an opening bracket? What about line

breaks?

• Same for keys. Is a dash (-) allowed in a key?

Chapter 7 regex teChniques

78

• What’s the rule for values? Do they extend to the end of

the line? Do they stop at a comment marker? Are they

multiline if the next line isn’t a comment, a key/value

pair, or a section marker? Is an empty value allowed?

• Are any escape sequences (like \t for a tabulator)

permitted? If yes, where? Just in the value, or also in the

key or the section headings?

• Is quoting supported, and if yes, where?

• Are non-ASCII characters allowed in section names,

keys, and values?

These are typical questions when analyzing a plain text data format.

When you investigate the answers to these questions, you can turn them

into test cases for your regex.

Data formats without a fixed specification often have several variations,

and implementations differ in what they accept. In this case, you have to

decide whether you target just one variant, or a common subset, or maybe

a superset of them all.

7.2 Think About Invalid Inputs
When you write your regexes, don’t just think about the strings that

the regexes should match. Pay equal attention to the strings they are

not supposed to match. In general, there are more strings that a regex

should reject than strings that a regex should accept, which makes it both

important and hard to think about them.

One thing you can do is write negative tests; that is, a test with input

that is not supposed to match. Another is to stop and think harder when

you see a term like .* or .+. These are so broad that they are wrong most

Chapter 7 regex teChniques

79

of the time. Most data formats don’t include a clause “and then, whatever.”

For instance, if you parse comments that run to the end of the line,

/'#' .*/ is wrong, because it can match past a line break; /'#' \N* \n? /

would be the better regex for that. And if you parse C-like comments,

/* ... */, the regex / '/*' .* '*/' also matches the whole string

/* abc */ de */, because .* greedily matches the closing comment

marker */ in the middle of the string.

7.3 Use Anchors
If you write a regex intended to match a string in its entirety, remember the

anchors ^ and $ to ensure that it does match the whole string. If not, think

about the boundaries of the regex match. If you try to match a word not

followed by a dot (.), the regex /\w+ <!before '.'> / can match a partial

word:

say "supercalifragilisticexpialidocious."

 ~~ / \w+ <!before '.'> /;

 # Output: ⌜supercalifragilisticexpialidociou⌟

The \w+ here actually matches one character less than the actual word,

so that <!before '.'> can match successfully.

If such behavior is not what you have in mind, you can add an

assertion such as a word boundary, / \w+ » <!before '.'> /. Since the

\w+ implies that part of a word has already been matched, you could also

write / \w+ <!before \w> <!before '.'> /.

The contents of an assertion is a regex, so here we have to quote the

dot (or escape it as <!before \.>), otherwise the dot would unfold its

special meaning and match any character.

Chapter 7 regex teChniques

80

7.4 Matching Quoted Strings
Many data formats include quoted strings. Their defining feature is that

between two (or possibly more) delimiting characters—the quotes—more

(typically nearly all) characters are allowed.

We’ve seen quoted strings in Perl 6 regexes themselves, where

nonword characters may appear that are otherwise reserved in regexes.

Common data exchange formats such as CSV, JSON, and YAML also

contain quotes. CSV—the comma separated values format—has a

separator character (by default the comma (,); hence the name) that

separates columns in a table-like structure. If a column value itself

contains the comma, you have to be able to distinguish that comma from

the separator character, and that is typically done by quoting.

A CSV file containing the columns a, then b,c, and finally d (i.e., three

columns) could be written as

a,"b,c",d

where "b,c" is a quoted string.

As mentioned several times already, / \" .* \" / is not a valid way

to parse quoted strings, since the .* can match past closing quotes. If the

input were

a,"b,c",d,"e,f"

then the regex for the quoted string would actually match the two

quoted strings in the input as well as the columns in between.

A less naïve approach is to write / \" .*? \" /, which limits the

quoted string to the shortest possible match. This works, but only if

nothing forces the regex to backtrack and match in a different way:

say '"a,b","' ~~ / ^ \" .*? \" $ /; # Output: ⌜"a,b","⌟

Chapter 7 regex teChniques

81

Here the input is an unbalanced quoted string, with a third quote

character in the middle. The first attempt only matches the part "a,b" of

the string, the $ anchor fails to match, and therefore backtracking kicks in

and the next attempt matches the whole string.

This is typically not the desired behavior. A more robust approach is to

forego the dot in the regex, and think harder about what’s allowed inside

the quoted string: everything except a quote character. That’s easy to

realize with a negated character class:

say '"a,b","' ~~ / \" <-["]>* \" /; # Output: ⌜"a,b"⌟
say '"a,b","' ~~ / ^ \" <-["]>* \" $ /; # Output: Nil

This now matches just a balanced, quoted string.

 Quoted Strings with Escaping Sequences
Our challenges don’t end here. In the preceding CSV example, we can

now deal with columns containing the separation character, but since the

quote character gained a special meaning, you can’t easily have a column

containing the quote character.

The most common solution to this problem is to introduce an escape

character, often the backlash (\). If you put a backlash before a quote

character or a backslash, that second character loses its special meaning.

Thus, if you want to include the string she said "hey, ho" in a CSV

column, you have to write it as "she said \"hey, ho\"".

Working with the backslash as an escape character becomes more

complicated because the backslash also has a special meaning in Perl 6

(and most other programming languages, for that matter). Consequently,

in ordinary string literals, you have to double the backslash to produce a

single one:

say "a\\b"; # Output: a\b

Chapter 7 regex teChniques

82

You can switch off this behavior in Perl 6 by adding a capital Q in front

of the string, which disables all escape sequences:

say Q"a\b"; # Output: a\b

say Q"a\\b"; # Output: a\\b

Regexes have no such mode, so you have to double backslashes in

regexes to match a literal backslash.

Coming back to quotes with escape characters, there are now two

cases to consider inside the quoted strings: regular characters without

any meaning, and escape sequences. Regular characters are all characters

except the quote or the backslash, which the character class <-[" \\]>

describes. An escape sequence is a backslash, followed by a quote or a

backslash. In regex terms, that’s \\ <[" \\]>. Many data formats allow

other characters behind a backslash too, in which case the sequence

simplifies to \\ . (remember the dot matches any character).

Combining these two cases leads to this regex:

my regex quoted {

 \" # opening quote

 [

 <-[" \\]> # regular character

 | \\ . # escape sequence

]*

 \" # closing quote

}

Don’t worry if it takes you a minute or more to read the regex. It’s a bit

to unpack and understand, but it’ll be the most involved regex in this book.

The my regex quoted { ... } construct declares a named regex as a

lexical variable. Later, we’ll learn about grammars where we can omit the my.

Chapter 7 regex teChniques

83

7.5 Testing Regexes
Regexes are code. They are declarative rather than procedural, which

means when you write a regex, you specify what text it matches, and

typically not how. But still, they are code, and you should write tests for

code to gain confidence they work as intended, and to be able to change

them without fear of breaking other code which uses them.

Perl 6 ships with a Test module that makes it easy to write such tests.

Here is a small test suite for the regex from the previous section:

my regex quoted {

 \" # opening quote

 [

 <-[" \\]> # regular character

 | \\ . # escape sequence

]*

 \" # closing quote

}

my @should-match =

 Q<"abc">,

 Q<"abc\\">,

 Q<"ac\\def\"ef">,

 ;

my @should-not-match =

 Q<abc>,

 Q<"abc"def">,

 Q<"ab\\"cdef">,

 ;

use Test;

plan 6;

Chapter 7 regex teChniques

84

for @should-match -> $s {

 ok $s ~~ / ^ <quoted> $ /,

 "Successful match of string $s";

}

for @should-not-match -> $s {

 nok $s ~~ / ^ <quoted> $ /,

 "Successful rejection of string $s";

}

Let’s explore this in more detail. The start is the familiar declaration of

the regex. The code then declares and initializes two array variables,

@should-match and @should-not-match.

The first contains strings that we expect the regex to match; the second

has examples of strings that the regex is not supposed to match.

Then, the testing begins. use Test; imports the testing module,3

which provides some functions used further down in the script. plan is

one of them and plan 6; tells the testing module that six test cases are

upcoming.

Two for loops follow, which check the example strings. ok is a testing

function that, when called with a true value as its first argument, makes a

test succeed; a false value fails it. The first argument here is the result of an

anchored regex match, $s ∼∼ / ^ <quoted> $ /. The second argument

is a label for the test. In the second loop, the testing function nok is used

instead, which has the inverse logic from ok: it expects a false value (like a

failed regex match) as the first argument.

When you run the script, it produces output like this:

$ perl6 quotes-with-escapes.p6

1..6

ok 1 - Successful match of string "abc"

ok 2 - Successful match of string "abc\\"

3 https://docs.perl6.org/language/testing

Chapter 7 regex teChniques

https://docs.perl6.org/language/testing
https://docs.perl6.org/language/testing

85

ok 3 - Successful match of string "ac\\def\"ef"

ok 4 - Successful rejection of string abc

ok 5 - Successful rejection of string "abc"def"

ok 6 - Successful rejection of string "ab\\"cdef"

If you change one of first three example strings to make the regex

match fail, you get a failing test output like this:

$ perl6 quotes-with-escapes.p6

1..6

ok 1 - Successful match of string "abc"

not ok 2 - Successful match of string "abc\\"a

Failed test 'Successful match of string "abc\\"a'

at quotes-with-escapes.p6 line 26

ok 3 - Successful match of string "ac\\def\"ef"

ok 4 - Successful rejection of string abc

ok 5 - Successful rejection of string "abc"def"

ok 6 - Successful rejection of string "ab\\"cdef"

Looks like you failed 1 test of 6

With many tests in a file, or even many test files, it can be helpful

to have a summary of all test outputs. The prove program commonly

bundled with Perl 5 understands the output from the tests (which is in the

Test Anything Protocol format4) and prints out a short summary:

$ prove -e perl6 quotes-with-escapes.p6

quotes-with-escapes.p6 .. ok

All tests successful.

Files=1, Tests=6, 1 wallclock secs (0.02 usr 0.00 sys + 0.24

cusr 0.01 csys = 0.27 CPU)

Result: PASS

4 https://testanything.org/

Chapter 7 regex teChniques

https://testanything.org/
https://testanything.org/

86

If tests fail, it focuses on the failed tests to make it easier to fix them:

$ prove -e perl6 quotes-with-escapes.p6

quotes-with-escapes.p6 .. 1/6

Failed test 'Successful match of string "abc\\"a'

at quotes-with-escapes.p6 line 26

Looks like you failed 1 test of 6

quotes-with-escapes.p6 .. Dubious, test returned 1 (wstat 256,

0x100) Failed 1/6 subtests

Test Summary Report

quotes-with-escapes.p6 (Wstat: 256 Tests: 6 Failed: 1)

 Failed test: 2

 Non-zero exit status: 1

Files=1, Tests=6, 0 wallclock secs (0.01 usr 0.01 sys

+ 0.23 cusr 0.01 c\sys = 0.26 CPU)

Result: FAIL

prove even adds color to the terminal output, with green for “All tests

successful.”, and red for test failures, making the status obvious.

After initial development of your regexes, it is likely that you want to

use them for something other than running tests. In this case, you can

extract the tests into a subroutine and run them only when you call your

script with a special command-line argument, such as --test:

my regex quoted {

 \" # opening quote

 [

 <-[" \\]> # regular character

 | \\ . # escape sequence

]*

 \" # closing quote

}

Chapter 7 regex teChniques

87

multi sub MAIN(Bool :$test!) {

 my @should-match =

 Q<"abc">,

 Q<"abc\\">,

 Q<"ac\\def\"ef">,

 ;

 my @should-not-match =

 Q<abc>,

 Q<"abc"def">,

 Q<"ab\\"cdef">,

 ;

 use Test;

 plan 6;

 for @should-match -> $s {

 ok $s ~~ / ^ <quoted> $ /,

 "Successful match of string $s";

 }

 for @should-not-match -> $s {

 nok $s ~~ / ^ <quoted> $ /,

 "Successful rejection of string $s";

 }

}

multi sub MAIN($input) {

 if $input ~~ / ^ <quoted> $ / {

 say "$input is a quoted string";

 }

 else {

 say "invalid input: $input";

 exit 1;

 }

}

Chapter 7 regex teChniques

88

In this example, multi sub MAIN introduces a subroutine called MAIN. Perl

6 automatically calls a subroutine MAIN for you and translates command- line

arguments into arguments for this function. The multi implies that there can

be more than one subroutine with this name. Perl 6 calls the candidate that

has the best fit of arguments. :$test! is a named argument, by virtue of the

leading colon (:), and the trailing exclamation mark (!) makes it required.

You can only call this candidate by passing in a named argument test.

This is what it looks like on the command line:

$ perl6 quote-checker --test

1..6

ok 1 - Successful match of string "abc"

ok 2 - Successful match of string "abc\\"

ok 3 - Successful match of string "ac\\def\"ef"

ok 4 - Successful rejection of string abc

ok 5 - Successful rejection of string "abc"def"

ok 6 - Successful rejection of string "ab\\"cdef"

Or if you want to use the prove test harness:

$ prove -e "" "perl6 quote-checker.p6 --test"

perl6 examples/quote-checker.p6 --test .. ok

All tests successful.

Files=1, Tests=6, 0 wallclock secs (0.01 usr 0.00 sys

+ 0.26 cusr 0.02 c\sys = 0.29 CPU)

Result: PASS

The second candidate, declared with multi sub MAIN($input), is the

“normal” execution path of the program. It takes a positional argument,

which in terms of the command line is a string that is not an option

(so doesn’t start with a minus (-) character). It checks whether the

argument is a quoted string and prints a message accordingly:

$ perl6 quote-checker '"yes"'

"yes" is a quoted string

Chapter 7 regex teChniques

89

$ perl6 quote-checker no

invalid input: no

The shell uses up one level of quoting, which is why in the first

invocation I used single quotes around the double-quoted string. This

works in the standard POSIX shell and in bash; other shells might require

you to do different quoting to get this example running.

7.6 Summary
When writing a regex for a data format, we often discover that we know

less about that data format than we originally thought. We can try to

find a formal specification that answers our questions, or we can use an

experimental approach, combined with a catalog of questions we have

about the data format.

We also discussed the use of assertions at the boundaries of what

regexes should match, as well as clever use of negated character classes to

reliably parse quoted strings, even in the presence of escape characters.

Testing gives us confidence that the regexes we write match no more

and no less than what we expected, and we explored a simple way to write

automated tests.

Chapter 7 regex teChniques

91
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_8

CHAPTER 8

Reusing and
Composing Regexes
Perl 6 offers great tools for composing regexes, thus making them reusable.

This inspires programmers to carefully organize and test their regexes, just

like regular code.

8.1 Named Regexes
Giving things a name, and being able to refer to those things by name, is

the first step toward composability and reusing regexes.

As we have seen before in some examples, you can give regexes names,

just like you can with variables, subroutines, and so on. This raises regexes to

the same level as the other constructs in a language that enable abstraction:

my regex byte {

 \d ** 1..3

 <?{ $/.Int <= 255 }>

}

my $str = '127.0.0.1';

say $str ~~ / ^ <byte> ** 4 % '.' $ /;

92

Here my regex byte { ... } declares a regex called byte. The word

before the regex keyword determines the scope: my is for lexical scoping.

Leaving it out declares a regex that is attached to a grammar. More on that

later.

Perl 6 regexes are code objects, like subroutines or methods. Just like

routines, you can refer to regexes by adding an ampersand (&) before their

name1:

say &byte.^name; # Output: Regex

say &byte ~~ Code; # Output: True

Unlike a normal subroutine, you can’t directly call a regex; it needs

a cursor object to track its progress. This is what you get when you try

anyway:

$ perl6 -e 'my regex a { . }; a("x")'

No such method '!cursor_start' for invocant of type 'Str'

Instead, you can use smart-matching to invoke a regex, just as you do

with an anonymous regex:

my regex a { . };

say "x" ~~ &a; # Output: ⌜x⌟

Or of course one could invoke it from inside an anonymous regex:

my regex a { . };

"x" ~~ / <a> /;

Calling a named regex through the angle bracket syntax <a> creates a

named capture with the name of the regex being called, here a. If you want

to avoid the capture, you can write it as <&a> instead.

1 Perl 6 has a built-in type called byte, so if you leave out the ampersand, you’ll
accidentally reference this type instead.

Chapter 8 reusing and Composing regexes

93

If you want the capture to be of a different name, you can write <b=&a>.

This produces a named capture b, but invokes the regex named a. If you

instead write <b=a>, the same capture is available under the names a and

b. There are even more ways to invoke named regexes (Table 8-1).

Table 8-1. Syntactic Forms of Invoking Named Regexes

Example Description Captures

<a> named regex call a

<&a> named regex call without capture (none)

<b=a> named regex call with alias a, b

<b=&a> named regex call, renamed b

<?a> named regex call as look-ahead (none)

<!a> named regex call as negated look-ahead (none)

If the first character after the opening < is a word character, a named

capture is produced with that name. Any form of punctuation—be it ? for a

look-ahead or & for a plain call—suppresses the capture.

 Lexical Analysis and Backtracking Control
In traditional parsing literature, analyzing a piece of text typically happens

in two stages: lexical analysis, also called tokenization, and then the actual

parsing.

Chapter 8 reusing and Composing regexes

94

Lexical analysis breaks up a piece of text into tokens, small pieces of

text with a label that classifies them. For instance, if we were to write a

small calculator, the input 2 * (3 + 5) could result in a stream of tokens

like this:

2 number

* product

(opening parenthesis

3 number

+ addition

5 number

) closing parenthesis

These tokens are initially in a linear list; the parsing step then

transforms them into a tree that we could use for evaluating the

expression:

*

/ \

2 +

 / \

 3 5

This two-step method works well for simple things like basic

mathematical expressions, but tends to fail when parsing something that

has context-dependent sublanguages. If you were to write a parser for Perl

6, the lexical analysis for the main language is very different from that of

the insides of quoted strings, which is yet very different from the lexical

analysis inside a regex.

To accommodate such situations, Perl 6 offers the keyword token,

which introduces a regex with backtracking turned off. The idea is that

lexical analysis should be simple enough that, once you decided how to cut

and label a token, you don’t want to give up that decision based on input

that comes later. Hence, no backtracking.

Chapter 8 reusing and Composing regexes

95

By doing lexical analysis inside a normal regex match, we have all the

context we need to decide what tokenization to apply.

The first example in this chapter involved a regex byte, which was

simple enough that we typically don’t want backtracking. We could

therefore rewrite it to use a token instead:

my token byte {

 \d ** 1..3

 <?{ $/.Int <= 255 }>

}

my $str = '127.0.0.1';

say $str ~~ / ^ <byte> ** 4 % '.' $ /;

The my token byte { ... } does the same as explicitly disabling

backtracking in the regex with my regex byte { :r ...}. However, it is

used so often that it deserves its own syntax.

Note that when we sometimes use the word “regex” to refer to regexes

declared with the token keyword.

8.2 Whitespace
Returning to the example of tokenizing a simple mathematical expression,

we glossed over an important detail: the input contained whitespace

between the tokens, and the token stream did not. Lexical analysis often

discards insignificant whitespace.

Not all whitespace is insignificant. You don’t want to write

"Hello, World" and have it come out as Hello, World. Many languages

make a distinction where space between tokens is insignificant between

tokens, but space inside a token (like a quoted string) is significant.

However, it’s more subtle than that: in languages like SQL, Perl,

Python, JavaScript, etcetera, you can leave out whitespace when a

word- like token follows a nonword token, or the other way around

Chapter 8 reusing and Composing regexes

96

(e.g. a+b is the same as a + b). Nevertheless, joining two word-like tokens

without any whitespace is forbidden. Conversely, if there are blanks

between two tokens, the amount does not matter.2

As an example, these two SQL statements produce identical parse

trees:

SELECT username,first_login FROM account;

SELECT

 username,

 first_login

FROM account;

In contrast, the following would be a syntax error, because it joins

word-like tokens without any whitespace:

SELECTusername,first_loginFROMaccount;

Perl 6 defines a regex called ws, short for whitespace, which parses

whitespace to the rules laid out before: arbitrary amounts of whitespace

(blanks, tabs, newlines, ...), but at least one, unless it’s at a word boundary.

Or to put it in code, regex ws { <!ww> \s* } (where <!ww> matches

anywhere except within a word).3

There is also a shortcut that helps you to avoid having to sprinkle

explicit <ws> or <.ws> calls everywhere in your code.4 If you declare your

regexes with the keyword rule instead of regex or token, Perl 6 inserts

implicit <.ws> calls for you wherever you use whitespace in your regex.

This has the same effect as using the :sigspace or :s modifier in your

regex.

2 In Python, it’s even more complicated, since whitespace at the start of a line is
significant, except when it’s inside an expression.

3 The assertion <!ww> matches every exception within a word.
4 Remember that the leading dot in <.ws> causes the regex not to capture. Since
the ws routine is all about whitespace that we don’t particularly care about, not
capturing its match makes sense.

Chapter 8 reusing and Composing regexes

97

Since the definition of ws uses the term \s*, a single blank in a regex

can match any amount of whitespace in the string, including tabs, spaces,

vertical tabs, and so on.

Considering our mathematical expressions again, we could thus write

the following regexes to match the simplest case of a sum of two numbers:

my token number { \d+ }

my rule sum { <number> '+' <number> }

say '1+2' ~~ / ^ <sum> $ /;

say '1 + 2' ~~ / ^ <sum> $ /;

The second line is equivalent to writing my token sum { <number>

<.ws> '+' <.ws> <number> <.ws> }, but is much more readable. The

last two lines both match successfully, the only difference being the

whitespace they matched:

⌜1+2⌟
 sum => ⌜1+2⌟
 number => ⌜1⌟
 number => ⌜2⌟
⌜1 + 2⌟
 sum => ⌜1 + 2⌟
 number => ⌜1⌟
 number => ⌜2⌟

The insertion of implicit <.ws> calls is not quite for every occurrence of

whitespace in the regex. In particular, whitespace at the start of the regex,

after a modifier like :r or :s, after an opening bracket or parenthesis,

and after a &, &&, |, and || is not replaced with an implicit <.ws> call. The

general idea is that rules parse whitespace inside and at the end of the

match, but not at the start of the match.

Chapter 8 reusing and Composing regexes

98

If you use rules, you must be aware that whitespace is significant,

and that even whitespace between an atom and its quantifier can make a

difference:

say "a a" ~~ rule { a+ }

say "a a" ~~ rule { a + }

The first line prints ⌜a ⌟ while the second one produces ⌜a a⌟,

including the final a. The blank between the a and the + is interpreted as a

<.ws> call, so the second rule is equivalent to token { [a <.ws>]+ }.

Finally, you need to be aware that just like any part of a regex, an

implicit call to ws can also make your match fail:

say 'ab' ~~ rule { a b } # Output: Nil

Here the implicit <.ws> between a and b doesn’t match, so the rule as a

whole does not match either.

8.3 Grammars
Named regexes offer a first level of abstraction, but we often want more

than one level. Most high-level programming languages have modules,

namespaces, classes, or even all three to manage reuse of functions and

methods.

Perl 6 offers these higher-level abstractions too, and makes them

available to regexes. A grammar is a class that offers some tools for

invoking regexes. Regexes are then methods in this grammar:

grammar IPv4Address {

 token byte {

 \d ** 1..3

 <?{ $/.Int <= 255 }>

 }

Chapter 8 reusing and Composing regexes

99

 token TOP {

 <byte> ** 4 % '.'

 }

}

my $str = '127.0.0.1';

if IPv4Address.parse($str) {

 say join ', ', $<byte>.list;

 # Output: 127, 0, 0, 1

}

This first grammar is declared with the grammar keyword, followed

by the name of the grammar, IPv4Address. A grammar is a class that

automatically adds the type Grammar5 as a parent class, and provides

several methods such as parse and subparse.

The grammar’s body is delimited by curly braces. Inside the body,

we declare regexes with the regex or token keyword. Note that we leave

out the my in front of the declaration, because now regexes are scoped as

methods belonging to the grammar.

The parse method invokes the regex called TOP, and implicitly anchors

it to the start and the end of the string. By contrast, the subparse method

anchors only to the start of the string. Both parse and subparse take an

optional, named argument rule that you can use to invoke a regex other

than TOP:

say IPv4Address.subparse($str, :rule<byte>); # Output: ⌜127⌟
say IPv4Address.parse($str, :rule<byte>); # Output: Nil

Here IPv4Address.parse($str, :rule<byte>) fails, because the

regex byte can’t match the whole input string, and parse implicitly

anchors the end of the regex to the end of the string. In contrast, subparse

matches the first number of the input string.

5 https://docs.perl6.org/type/Grammar

Chapter 8 reusing and Composing regexes

https://docs.perl6.org/type/Grammar
https://docs.perl6.org/type/Grammar

100

Inside a grammar, a call to another regex of the same grammar works

just as it does outside; with angle brackets: <byte>. But if you want to

suppress the capture, you have to use a dot instead of the ampersand:

<.byte>. The same applies to renaming, so <octect=.byte> calls the

regex byte, but produces a capture named octect. The use of the dot (.) is

analogous to the method call syntax, which also uses the dot.

8.4 Code Reuse with Grammars
Perl 6 offers two ways to reuse object-oriented code: inheritance and role

composition. Since grammars are really classes, both of these mechanisms

also apply to grammars.

 Inheritance
Inheritance is a form of specialization. If you have a situation where you

have a generic grammar, and then want to create a variant with some

tweaks, the tweaked variant can inherit from the more general one.

Consider, for example, a grammar for SQL, the Structured

Query Language.6 There are standards for this grammar, but some

implementations are dialects. One such instance is MySQL which uses

backticks instead of double quotes to quote table and column names. A

grammar for the MySQL dialect would then inherit from the standard SQL

grammar and override the regexes for parsing table and column names.

6 https://en.wikipedia.org/wiki/SQL

Chapter 8 reusing and Composing regexes

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL

101

To illustrate this idea, let’s focus just on parsing SQL column names.

The SQL standard dictates that they are either an identifier or a double-

quoted string:

grammar StandardSQL {

 regex TOP {

 'SELECT' \s+ <name>

 }

 regex name {

 <identifier>

 | <quoted_name>

 }

 regex quoted_name {

 \" <-["]>+ \"

 }

 regex identifier {

 « <:alpha> \w* »

 }

}

say StandardSQL.parse('SELECT salary');

say StandardSQL.parse('SELECT "monthly salary"');

Both of these parses succeed, and they produce this output:

⌜SELECT salary⌟
 name => ⌜salary⌟
 identifier => ⌜salary⌟
⌜SELECT "monthly salary"⌟
 name => ⌜"monthly salary"⌟
 quoted_name => ⌜"monthly salary"⌟

Chapter 8 reusing and Composing regexes

102

As mentioned before, MySQL uses backticks instead of double quotes

to quote identifiers. Rather than duplicating the whole grammar, we can

write a grammar MysqlSQL that inherits from StandardSQL and overwrites

just the regex quoted_name:

grammar MysqlSQL is StandardSQL {

 regex quoted_name {

 \` <-[`]>+ \`

 }

}

say MysqlSQL.parse('SELECT `monthly salary`');

Here the text "is StandardSQL" in the grammar declaration defines

the inheritance from the StandardSQL grammar. Inheritance means that

if a regex or method is called in the child class, and it is not defined in the

child class, the method of the same name from the parent class is called

instead.

 Role Composition
A role—also called a trait in other programming languages—is a piece of

functionality (such as methods and regexes) that can be copied into a class

or a grammar. This copying is called composition.

Role composition is a good fit for assembling a grammar from smaller,

independent parts. For instance, parsing numbers and quoted strings is

pretty universal, and both might be necessary when parsing SQL, JSON,

and several types of configuration files. Parsing numbers is also applicable

in parsing mathematical expressions:

role ParseInteger {

 token unsigned { <[0..9]>+ }

 token signed { ['+' | '-']? <unsigned> }

}

Chapter 8 reusing and Composing regexes

103

role ParseFloat does ParseInteger {

 token escale { <[eE]> <unsigned> }

 token float {

 $<sign>=<[+-]>?

 [

 $<coeff> = [<[0..9]>* '.' <unsigned>] <escale>?

 | $<coeff> = [<unsigned>] <escale>

]

 }

}

grammar Sum does ParseFloat {

 token number { <signed> | <float> }

 rule TOP { <number> '+' <number> }

}

grammar JSON does ParseFloat {

 token value

 <signed>

 | <float>

 # more options go here

 }

 # rest of the grammar here

}

say Sum.parse('2 + -4');

This example shows two roles that contain regexes: role ParseInteger

has two tokens, one for parsing an integer without any sign (token

unsigned), and one for parsing an integer that potentially has a + or - sign.

The second role, ParseFloat, makes use of the first one by declaring does

ParseInteger. It then declares a token float to parse a floating-point

number.

Chapter 8 reusing and Composing regexes

104

Unlike inheritance, role composition detects name conflicts at compile

time, and forces you to resolve these conflicts. This makes it safe to

compose multiple roles into the same class, or multiple roles into a single

role.

8.5 Proto Regexes
Suppose you want to write a grammar for JSON7 (also known as JavaScript

Object Notation). The json.org homepage helpfully tells you that when

parsing a value, you expect a string, number, object, array, or the literal

strings true, false, or null. No problem, you can write that:

grammar JSON {

 token value {

 | <string>

 | <number>

 | <object>

 | <array>

 | 'true'

 | 'false'

 | 'null'

 }

 # more tokens and rules go here

}

This works, but it’s not great for extensibility. Suppose you want to

parse an extended JSON dialect, such as one that adds a date type in

the form of an unquoted string like 2015-12-24. You could do that by

subclassing the JSON grammar hinted at in the previous example, write a

token date to parse the date, and then you have to override token value,

listing all the alternatives from the parent grammar and then your own.

7 http://json.org/

Chapter 8 reusing and Composing regexes

http://json.org/
http://json.org/

105

This duplication is not only annoying and error-prone, it also makes

multiple amendments to the same grammar impossible. If somebody else

wants to write another extension that adds a different kind of new value

(let’s say a reference type), their extension won’t be aware of yours, so the

user can’t easily mix and match them.

Perl 6 offers a solution to this problem: proto regexes. A proto regex is a

collection of regexes that all form a big alternative, as if each of them were

delimited by a |. Here is our part of the JSON grammar written as a proto

regex:

grammar JSON {

 proto token value {*};

 token value:sym<string> { <string> }

 token value:sym<number> { <number> }

 token value:sym<object> { <object> }

 token value:sym<array> { <array> }

 token value:sym<true> { <sym> }

 token value:sym<false> { <sym> }

 token value:sym<null> { <sym> }

 # more tokens and rules go here

}

The line proto token value {*} introduces a proto regex (or token)

with the name value. This instructs Perl 6 that there will be more regexes

of the name value, with some small additions. These small additions

are of the form :sym<SOMETHING> and help you and the compiler to keep

these regexes apart. The body of such a regex can be anything you know

from regexes, so instead of calling a token number from inside token

value:sym<number>, we could do the implementation right there:

token value:sym<number> {

 '-'?

 [0 | <[1..9]> <[0..9]>*]

Chapter 8 reusing and Composing regexes

106

 [\. <[0..9]>+]?

 [<[eE]> [\+|\-]? <[0..9]>+]?

}

Inside each individual candidate, the name that goes inside the

:sym<...> is available as the special symbol <sym>. So instead of writing

token value:sym<null> { 'null' }

we can write

token value:sym<null> { <sym> }

to avoid repetition of the name.

Let’s reduce the example slightly and turn it into runnable code:

grammar JSONValue {

 proto token value {*};

 token value:sym<true> { <sym> }

 token value:sym<false> { <sym> }

 token value:sym<null> { <sym> }

 token TOP { <value> }

}

This is a very minimalistic grammar that parses only the JSON values

true, false, and null. Our extension to make it parse a date in ISO 8601

format could be a simple role that adds one candidate token:

role DateValue {

 token value:sym<date> {

 <[0..9]>**4 '-' <[0..9]>**2 '-' <[0..9]>**2

 }

}

We do not need to declare a proto token value in the role, because it

will be mixed into a grammar that contains this declaration.

Chapter 8 reusing and Composing regexes

107

To use the DateValue extension, we can generate a grammar based on

JSONValue and the role:

grammar JSONValueWithDate is JSONValue does DateValue { };

for <true null 2015-12-24 42> -> $str {

 say $str, ': ', ?JSONValueWithDate.parse($str);

}

This uses both inheritance from JSONValue and role composition with

DateValue to generate a new grammar, which can now parse true, false,

null, and date values. It produces this output:

true: True

null: True

2015-12-24: True

42: False

The ? operator outside a regex forces Boolean context, which is why we

see True and False in the output instead of Match objects and Nil.

We can avoid explicitly creating the grammar JSONValueWithDate

and simply compose an anonymous grammar on the fly by using the but

operator:

for <true null 2015-12-24 42> -> $str {

 say $str, ': ', ?(JSONValue but DateValue).parse($str);

}

The but operator creates a copy of the type or object on the left-hand

side, applies the role to it, and returns the result.

Both approaches can be used to add more than one extension to the

grammar:

role IntegerValue {

 token value:sym<integer> { <[0..9]>+ }

}

Chapter 8 reusing and Composing regexes

108

my $grammar = (JSONValue but DateValue) but IntegerValue;

for <true null 2015-12-24 42> -> $str {

 say $str, ': ', ?$grammar.parse($str);

}

Now the grammar composed from JSONValue, DateValue, and

IntegerValue can parse all four example input strings. The extension roles

don’t have to take the others into account; they are freely combinable.

The examples for parsing subsets of JSON have been taken from

the JSON::Tiny8 module, which parses JSON using a manageable Perl

6 grammar.9 We’re getting closer to being able to create real-world,

extensible grammars with many practical applications.

8.6 Summary
Perl 6 offers named regexes for easier reuse. To simplify lexical analysis,

the token and rule keywords disable backtracking, with the "rule"

keyword also implicitly parsing whitespace.

Since regexes can behave as methods, you can use powerful

techniques from object-oriented programming for managing and reusing

regexes. Grammars group regexes, and inheritance and role composition

make them accessible for reuse.

Finally, proto regexes ensure that extensions can happen in a natural

way, without interfering with other potential extensions to the same place

in a grammar.

8 https://github.com/moritz/json/
9 https://github.com/moritz/json/blob/master/lib/JSON/Tiny/Grammar.pm

Chapter 8 reusing and Composing regexes

https://github.com/moritz/json/
https://github.com/moritz/json/blob/master/lib/JSON/Tiny/Grammar.pm
https://github.com/moritz/json/blob/master/lib/JSON/Tiny/Grammar.pm
https://github.com/moritz/json/
https://github.com/moritz/json/blob/master/lib/JSON/Tiny/Grammar.pm

109
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_9

CHAPTER 9

Parsing
with Grammars
Grammars are the proverbial Swiss-army chain saw1 for parsing.

In this chapter, we will explore them in more detail. Most importantly,

we will discuss how to harness their power.

9.1 Understanding Grammars
Grammars implement a top-down approach to parsing. The entry point,

usually the regex TOP, knows about the coarse-grained structure and

calls further regexes that descend into the gory details. Recursion can be

involved too. For example, if you parse a mathematical expression, a term

can be an arbitrary expression inside a pair of parentheses.

This is a top-down structure, or more precisely a recursive descent

parser.2 If no backtracking is involved, we call it a predictive parser, because

at each position in the string, we know exactly what we’re looking for—we

can predict what the next token is going to be (even if we can only predict

that it might be one of a set of alternatives).

1 Like a Swiss-army knife, but with much more power.
2 https://en.wikipedia.org/wiki/Recursive_descent_parser

https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/Recursive_descent_parser

110

The resulting match tree corresponds in structure exactly to the call

structure of regexes in the grammar. Let’s consider parsing a mathematical

expression that only includes the operators *, +, and parentheses for

grouping:

grammar MathExpression {

 token TOP { <sum> }

 rule sum { <product>+ % '+' }

 rule product { <term>+ % '*' }

 rule term { <number> | <group> }

 rule group { '(' <sum> ')' }

 token number { \d+ }

}

say MathExpression.parse('2 + 4 * 5 * (1 + 3)');

From the grammar itself, you can already see the potential for

recursion: sum calls product, which calls term, which calls group, which

calls sum again. This allows parsing of nested expressions of arbitrary

depth.

Running the previous example produces the following match object:

⌜2 + 4 * 5 * (1 + 3)⌟
 sum => ⌜2 + 4 * 5 * (1 + 3)⌟
 product => ⌜2 ⌟
 term => ⌜2 ⌟
 number => ⌜2⌟
 product => ⌜4 * 5 * (1 + 3)⌟
 term => ⌜4 ⌟
 number => ⌜4⌟
 term => ⌜5 ⌟
 number => ⌜5⌟
 term => ⌜(1 + 3)⌟
 group => ⌜(1 + 3)⌟

Chapter 9 parsing with grammars

111

 sum => ⌜1 + 3⌟
 product => ⌜1 ⌟
 term => ⌜1 ⌟
 number => ⌜1⌟
 product => ⌜3⌟
 term => ⌜3⌟
 number => ⌜3⌟

If you want to know how a particular number was parsed, you can

follow the path backward by looking for lines above the current line that

are indented less; for instance, the number 1 was parsed by token number,

called from term, called from product, and so on.

We can verify this by raising an exception from token number:

token number {

 (\d+)

 { die "how did I get here?" if $0 eq '1' }

}

This indeed shows the call chain in the backtrace, with the most

immediate context at the top:

how did I get here?

 in regex number at bt.p6 line 9

 in regex term at bt.p6 line 5

 in regex product at bt.p6 line 4

 in regex sum at bt.p6 line 3

 in regex group at bt.p6 line 6

 in regex term at bt.p6 line 5

 in regex product at bt.p6 line 4

 in regex sum at bt.p6 line 3

 in regex TOP at bt.p6 line 2

 in block <unit> at bt.p6 line 13

Chapter 9 parsing with grammars

112

This grammar only uses tokens and rules, so there is no backtracking

involved, and the grammar is a predictive parser. This is fairly typical.

Many grammars work fine without backtracking, or with backtracking in

just a few places.

 Recursive Descent Parsing and Precedence
The MathExpression grammar has two rules which are structurally

identical:

rule sum { <product>+ % '+' }

rule product { <term>+ % '*' }

Instead, we could have written

rule expression { <operator>+ % <term> }

token operator { '*' | '+' }

or even used the proto token construct discussed in the previous

chapter to parse different operators. The reason I chose the first, more

repetitive, approach is that it makes the match structure correspond to the

precedence of the operators * and +.

When evaluating the mathematical expression 1 + 2 * 5,

mathematicians and most programming languages evaluate the 2 * 5

first, because the * operator has tighter precedence than +. The result is

then substituted back into the expression, leading to 1 + 10, and finally 11

as the result.

When parsing such expressions with the first version of the grammar,

the structure of the parse tree expresses this grouping: it has—as the top

level—a single sum, with the operands being 1 and 2 * 5.

This comes at a cost: we need a separate rule and name for each

precedence level, and the nesting of the resulting match object has at least

one level per precedence level. Furthermore, adding more precedence

levels later on is not trivial, and very hard to do in a generic way. If you are

Chapter 9 parsing with grammars

113

not willing to accept these costs, you can instead use the flat model with

a single token for parsing all operators. If you then need the structure in a

way that reflects precedence, you can write code that transforms the list

into a tree. This is commonly called an operator precedence parser.3

 Left Recursion and Other Traps
To avoid infinite recursion, you have to take care that each possible

recursion cycle advances the cursor position by at least one character. In

the MathExpression grammar, the only possible recursion cycle is sum →

product → term → group → sum, and group can only match if it consumes

an initial open parenthesis, (.

If recursion does not consume a character, it is called left recursion and

needs special language support that Perl 6 does not offer. A case in point is

token a { <a>? 'a' }

which could match the same input as the regex a+, but instead loops

infinitely without progressing.

A common technique to avoid left recursion is to have a structure

where you can order regexes from generic (here sum) to specific (number).

You only have to be careful and check for consumed characters when a

regex deviates from that order (e.g., group calling sum).

Another potential source of infinite loops is when you quantify a regex

that can match the empty string. This can happen when parsing a language

that actually allows something to be empty. For instance, in UNIX shells,

you can assign variables by potentially leaving the right-hand side empty:

VAR1=value

VAR2=

3 https://en.wikipedia.org/wiki/Operator-precedence_parser

Chapter 9 parsing with grammars

https://en.wikipedia.org/wiki/Operator-precedence_parser
https://en.wikipedia.org/wiki/Operator-precedence_parser

114

When writing a grammar for UNIX shell commands, it might be

tempting to write a token string { \w* } that would potentially match

an empty string. In a situation that allows for more than one string literal,

<string>+ can then hang, because the effective regex, [\w*]+, tries to

match a zero-width string infinitely many times.

Once you are aware of the problem, the solution is pretty simple:

change the token to not allow an empty string (token string { \w+ }),

and explicitly take care of situations where an empty string is allowed:

token assignment {

 <variable> '=' <string>?

}

9.2 Starting Simple
Even though a grammar works from the top down, developing a grammar

works best from the bottom up. It is often not obvious from the start what

the overall structure of a grammar will be, but you usually have a good idea

about the terminal tokens: those that match text directly without calling

other subrules.

In the earlier example of parsing mathematical expressions, you might

not have known from the start how to arrange the rules that parse sums

and products, but it’s likely that you knew you had to parse a number at

some point, so you can start by writing:

grammar MathExpression {

 token number { \d+ }

}

This is not much, but it’s also not very complicated, and it’s a good

way to get over the writer’s block that programmers sometimes face when

challenged with a new problem area. Of course, as soon as you have a

token, you can start to write some tests:

Chapter 9 parsing with grammars

115

grammar MathExpression {

 token number { \d+ }

}

multi sub MAIN(Bool :$test!) {

 use Test;

 plan 2;

 ok MathExpression.parse('1234', :rule<number>),

 '<number> parses 1234';

 nok MathExpression.parse('1+4', :rule<number>),

 '<number> does not parse 1+4';

}

Now you can start to build your way up to more complex expressions:

grammar MathExpression {

 token number { \d+ }

 rule product { <number>+ % '*' }

}

multi sub MAIN(Bool :$test!) {

 use Test;

 plan 5;

 ok MathExpression.parse('1234', :rule<number>),

 '<number> parses 1234';

 nok MathExpression.parse('1+4', :rule<number>),

 '<number> does not parse 1+4';

 ok MathExpression.parse('1234', :rule<product>),

 '<product> can parse a simple number';

 ok MathExpression.parse('1*3*4', :rule<product>),

 '<product> can parse three terms';

 ok MathExpression.parse('1 * 3', :rule<product>),

 '<product> and whitespace';

}

Chapter 9 parsing with grammars

116

It is worth it to include whitespace early on in the tests. The previous

example looks innocent enough, but the last test actually fails. There is no

rule that matches the whitespace between the 1 and the *. Adding a space

in the regex between the <number> and the + quantifier makes the tests

pass again, because the whitespace inserts an implicit <.ws> call.

Such subtleties are easy to catch if you start really simple and catch them

as soon as possible. If instead you give in to the temptation of writing down a

whole grammar from top to bottom, you can spend many hours debugging

why some seemingly simple thing such as an extra space makes the parse fail.

9.3 Assembling Complete Grammars
Once you have written the basic tokens for lexical analysis, you can

progress to combining them. Typically the tokens do not parse whitespace

at the borders of their matches, so the rules that combine them do that.

In the MathExpression example in the previous section, rule product

directly called number, even though we now know that the final version

uses an intermediate step, rule term, which can also parse an expression

in parentheses. Introducing this extra step does not invalidate the tests

we have written for product, because the strings it matched in the early

version still match. Introducing more layers happens naturally when you

start with a grammar that handles a subset of the language, which you later

expand.

9.4 Debugging Grammars
There are two failure modes for a regex or a grammar: it can match when

it’s not supposed to match (a false positive), or it can fail to match when it’s

supposed to match (a false negative). Typically, false positives are easier to

understand, because you can inspect the resulting match object and see

which regexes matched which part of the string.

Chapter 9 parsing with grammars

117

There is a handy tool for debugging false negatives: the

Grammar::Tracer module. If you load the module in a file containing a

grammar, running the grammar produces diagnostic information that can

help you find out where a match went wrong.

Note that this is only a diagnostic tool for developers; if you want

to give end users better error messages, please read Chapter 11 for

improvement suggestions.

You need to install the Perl 6 module Grammar::Debugger, which also

contains Grammar::Tracer. If you use the moritzlenz/perl6-regex-

alpine docker image, this is already done for you. If you installed Perl 6 via

another method, you need to run

zef install Grammar::Debugger

on the command line. If zef is not yet installed, follow the installation

instructions on the zef GitHub page.4

Let’s look at the Perl 6 module Config::INI5 by Tadeusz Sośnierz. It

contains the following grammar6 (slightly reformatted here):

grammar INI {

 token TOP {

 ^ <.eol>* <toplevel>? <sections>* <.eol>* $

 }

 token toplevel { <keyval>* }

 token sections { <header> <keyval>* }

 token header { ^^ \h* '[' ~ ']' $<text>=<-[\] \n]>+

 \h* <.eol>+ }

 token keyval { ^^ \h* <key> \h* '=' \h* <value>? \h*

 <.eol>+ }

4 https://github.com/ugexe/zef#installation
5 https://github.com/tadzik/perl6-Config-INI
6 https://github.com/tadzik/perl6-Config-INI/blob/master/lib/Config/INI.pm

Chapter 9 parsing with grammars

https://github.com/ugexe/zef#installation
https://github.com/ugexe/zef#installation
https://github.com/tadzik/perl6-Config-INI
https://github.com/tadzik/perl6-Config-INI/blob/master/lib/Config/INI.pm
https://github.com/ugexe/zef#installation
https://github.com/tadzik/perl6-Config-INI
https://github.com/tadzik/perl6-Config-INI/blob/master/lib/Config/INI.pm

118

 regex key { <![#\[]> <-[;=]>+ }

 regex value { [<![#;]> \N]+ }

 token eol { [<[#;]> \N*]? \n }

}

Suppose we want to understand why it does not parse the following

piece of input text:

a = b

[foo]

c: d

So, before the grammar, we insert the line

use Grammar::Tracer;

and after it, add a small piece of code that calls the .parse method of that

grammar:

INI.parse(q:to/EOF/);

a = b

[foo]

c: d

EOF

This produces a sizable but fairly informative piece of output.

Each entry consists of a name of a regex, like TOP or eol (for "end of

line"), followed by the indented output of the regexes it calls. After each

regex comes a line containing an asterisk (*) and either MATCH followed by

the string segment that the regex matched, or FAIL if the regex failed.

Chapter 9 parsing with grammars

119

Let’s look at the output piece by piece, even if it comes out in one

chunk:

TOP

| eol

| * FAIL

| toplevel

| | keyval

| | | key

| | | * MATCH "a "

| | | value

| | | * MATCH "b"

| | | eol

| | | * MATCH "\n"

| | | eol

| | | * FAIL

| | * MATCH "a = b\n"

| | keyval

| | | key

| | | * FAIL

| | * FAIL

| * MATCH "a = b\n"

This tells us that TOP called eol, which failed to match. Since the call

to eol is quantified with *, this does not cause the match of TOP to fail.

TOP then calls key, which matches the text "a", and value, which matches

"b". The eol regex then proceeds to match the newline character, fails on

the second attempt (since there are no two newline characters in a row).

This causes the initial keyval token to match successfully. A second call to

keyval matches pretty quickly (in the call to key). Then, the match of token

toplevel proceeds successfully, consuming the string "a = b\n".

Chapter 9 parsing with grammars

120

So far, this all looks as expected. Now let’s take a look at the second

chunk of output:

| sections

| | header

| | | eol

| | | * MATCH "\n"

| | | eol

| | | * FAIL

| | * MATCH "[foo]\n"

| | keyval

| | | key

| | | * MATCH "c: d\n"

| | * FAIL

| * MATCH "[foo]\n"

TOP next calls sections, wherein token header successfully matches

the string "[foo]\n". Then, keyval calls key, which matches the whole

line "c: d\n". Wait, that’s not right, is it? We might have expected key

to only match the c. I certainly wouldn’t have expected it to match a

newline character at the end. The lack of an equals sign in the input

causes the regex engine to never even call regex value. But since keyval

is again quantified with the star * quantifier, the match of the calling regex

sections succeeds in matching just the header "[foo]\n".

The last part of the Grammar::Tracer output follows:

| sections

| | header

| | * FAIL

| * FAIL

| eol

| * FAIL

* FAIL

Chapter 9 parsing with grammars

121

It’s FAILs from here on. The second call to sections again tries to parse

a header, but its next input is still "c: d\n", so it fails, as does the end-of-

string anchor $ in token TOP, failing the overall match in method parse.

So we have learned that regex key matched the whole line c: d\n, but

since no equals sign (=) follows it, token keyval cannot parse this line. Since

no other regex (notably not header) matches it, this is where the match fails.

As you can see from this example run, Grammar::Tracer enables us to

pinpoint where a parse failure happens, even though we had to look carefully

through its output to locate it. When you run it in a terminal, you automatically

get colored output, with FAIL having a red and MATCH a green background, and

token names standing out in bold white (instead of the usual gray) output.

This makes it easier to scan from the bottom (where a failed match usually

leaves a trail of red FAILs) up to the trailing successful matches, and then look

in the vicinity of the border between matches and failures.

Since debugging imposes a significant mental burden, and the output

from Grammar::Tracer tends to grow quickly, it is generally advisable to

reduce the failing input to a minimal specimen. In the case described

before, we could have removed the first line of the input string and saved

ten lines of Grammar::Tracer output to look through.

9.5 Parsing Whitespace and Comments
As said before, the idiomatic way to parse insignificant whitespace is by

calling <.ws>, typically implicitly by using whitespace in a rule. The default ws

implementation, <!ww>\s*, works well for many languages, but it has its limits.

In a surprising number of file formats and computer languages, there

is significant whitespace that <.ws> would just gobble up. These include

INI files (where a newline typically indicates a new key/value pair), Python

and YAML (where indentation is used for grouping), CSV (where a newline

signals a new record), and Makefiles (where indentation is required to be

with a tabulator character).

Chapter 9 parsing with grammars

122

In these cases, it is best practice to override ws in your own grammar

to match only insignificant whitespace. Let’s take a look at a second,

minimalistic INI parser, independently developed from the one described

in the previous section:

grammar INIFile {

 token TOP { <section>* }

 token section {

 <header>

 <keyvalue>*

 }

 rule header {

 '[' <-[\] \n]>+ ']' <.eol>

 }

 rule keyvalue {

 ^^

 $<key>=[\w+]

 <[:=]>

 $<value>=[<-[\n;#]>*]

 <.eol>

 }

 token ws { <!ww> \h* }

 token eol {

 \n [\h*\n]*

 }

}

This parses simple INI configuration files like this:

[db]

driver: mysql

host: db01.example.com

port: 122

username: us123

password: s3kr1t

Chapter 9 parsing with grammars

123

Take note how this grammar uses two paths for parsing whitespace:

a custom ws token that only matches horizontal whitespace (blanks and

tabs), and a separate token eol that matches (significant) line breaks. The

eol token also gobbles up further lines consisting only of whitespace.

If a language supports comments, and you don’t want them to appear

in your parse tree, you can parse them either in your ws token, or in eol

(or your equivalent thereof). Which one it is depends on where comments

are allowed. In INI files, they are only allowed after a key/value pair or in a

line on their own, so eol would be the fitting place. In contrast, SQL allows

comments in every place where whitespace is allowed, so it is natural to

parse them in ws:

comment parsing for SQL:

token ws { <!ww> \s* ['--' \N* \n]* }

comment parsing for INI files:

token eol { [[<[#;]> \N*]? \n]+ }

9.6 Keeping State
Some of the more interesting data formats and languages require the

parser to store things (at least temporarily) to be able to correctly parse

them. A case in point is the C programming language, and others inspired

by its syntax (such as C++ and Java). Such languages allow variable

declarations of the form type variable = initial_value, like this:

int x = 42;

This is valid syntax, but only if the first word is a type name. In contrast,

this would be invalid, because x is not a type:

int x = 42;

x y = 23;

Chapter 9 parsing with grammars

124

From these examples, it is pretty clear that the parser must have a

record of all the types it knows. Since users can also declare types in their

code files, the parser must be able to update this record.

Many languages also require that symbols (variables, types, and

functions) be declared before they are referenced. This too requires the

grammar to keep track of what has been declared and what hasn’t. This

record of what has been declared (and what is a type or not, and possibly

other meta information) is called a symbol table.

Instead of parsing the full C programming language, let’s consider a

minimalist language that just allows assignments of lists of numbers, and

variables to variables:

a = 1

b = 2

c = a, 5, b

If we don’t impose declaration rules, it’s pretty easy to write a

grammar:

grammar VariableLists {

 token TOP { <statement>* }

 rule statement { <identifier> '=' <termlist> \n }

 rule termlist { <term> * % ',' }

 token term { <identifier> | <number> }

 token number { \d+ }

 token identifier { <:alpha> \w* }

 token ws { <!ww> \h* }

}

Chapter 9 parsing with grammars

125

Now we demand that variables can only be used after they’ve been

assigned to, so that the following input would be invalid, because b is not

declared in the second line, where it’s used:

a = 1

c = a, 5, b

b = 2

To maintain a symbol table, we need three new elements: a declaration

of the symbol table, some code that adds a variable name to the symbol

table when the assignment has been parsed, and finally a check whether a

variable has been declared at the time we come across it in a term list:

grammar VariableLists {

 token TOP {

 :my %*SYMBOLS;

 <statement>*

 }

 token ws { <!ww> \h* }

 rule statement {

 <identifier>

 { %*SYMBOLS{ $<identifier> } = True }

 '=' <termlist>

 \n

 }

 rule termlist { <term> * % ',' }

 token term { <variable> | <number> }

 token variable {

 <identifier>

 <?{ %*SYMBOLS{ $<identifier> } }>

 }

 token number { \d+ }

 token identifier { <:alpha> \w* }

}

Chapter 9 parsing with grammars

126

In the token TOP, :my %*SYMBOLS declares a variable. Declarations in

regexes start with a colon (:), and end with a semicolon (;). In between

they look like normal declarations in Perl 6. The % sigil signals that the

variable is a hash—a mapping of string keys to values. The * makes it a

dynamic variable—a variable that is not limited to the current scope but

also visible to code (or regexes, which are also code) that is called from the

current scope. Since this is an unusually large scope, it is custom to choose

a variable in CAPITAL LETTERS.

The second part, adding a symbol to the symbol table, happens in the

rule statement:

rule statement {

 <identifier>

 { %*SYMBOLS{ $<identifier> } = True }

 '=' <termlist>

 \n

}

Inside the curly braces is regular (non-regex) Perl 6 code, so we can

use it to manipulate the hash %*SYMBOLS. The expression $<identifier>

accesses the capture for the variable name.7 Thus, if this rule parses a

variable a, this statement sets %*SYMBOLS{ 'a' } = True.

The placement of the code block is relevant. Putting it before the call

to termlist means that the variable is already known when the term list is

parsed, so it accepts input like a = 2, a. If we call termlist first, this kind

of input is rejected.

7 At this point it is crucial that identifier does not parse its surrounding
whitespace. Hence the principle that tokens do not care about whitespace, and
the rules that call those tokens parse the whitespace.

Chapter 9 parsing with grammars

127

Speaking of rejection, this part happens in token variable. term now

calls the new token variable (previously it called identifier directly),

and variable validates that the symbol has been declared before:

token term { <variable> | <number> }

token variable {

 <identifier>

 <?{ %*SYMBOLS{ $<identifier> } }>

}

You might remember from earlier examples that <?{ ... }> executes

a piece of Perl 6 code, and fails the parse if it returns a false value. If

$<identifier> is not in %*SYMBOLS, this is exactly what happens. At this

time, the nonbacktracking nature of tokens is important. If the variable

being parsed is abc, and a variable a is in %*SYMBOLS, backtracking would

try shorter matches for <identifier> until it hits a, and then succeeds.8

Since %*SYMBOLS is declared in token TOP, you have to duplicate this

declaration when you try to call rules other than TOP from outside the

grammar. Without a declaration such as my %*SYMBOLS;, a call like

VariableLists.parse('abc', rule => 'variable');

dies with

Dynamic variable %*SYMBOLS not found

8 In this case, this would be harmless, because no other rule could match the rest of
the variable, leading to a parse error nonetheless. But in more complicated cases,
this kind of unintended backtracking can lead to errors that are very puzzling for
the maintainer of the grammar.

Chapter 9 parsing with grammars

128

 Implementing Lexical Scoping with Dynamic
Variables
Many programming languages have the concept of a lexical scope. A scope

is the area in a program where a symbol is visible. We call a scope lexical

if the scope is determined solely by the structure of the text (and not, say,

runtime features of the program).

Scopes can typically be nested. A variable declared in one scope is

visible in this scope, and in all inner, nested scopes (unless an inner scope

declares a variable of the same name, in which case the inner declaration

hides the outer).

Coming back to the toy language of lists and assignments, we can

introduce a pair of curly braces to denote a new scope, so this is valid:

a = 1

b = 2

{

 c = a, 5, b

}

but the next example is invalid, because it declares b only in an inner

scope, and so it is not visible in the outer scope:

a = 1

{

b = 2

}

c = a, 5, b

To implement these rules in a grammar, we can make use of an

important observation: dynamic scoping in a grammar corresponds to

lexical scoping in text it parses. If we have a regex block that parses both

the delimiters of a scope and the things inside that scope, its dynamic

Chapter 9 parsing with grammars

129

scope is confined to all of the regexes it calls (directly and indirectly), and

that is also the extent of the lexical scope it matches in the input text.

Let’s take a look at how we can implement dynamic scoping:

grammar VariableLists {

 token TOP {

 :my %*SYMBOLS;

 <statement>*

 }

 token ws { <!ww> \h* }

 token statement {

 | <declaration>

 | <block>

 }

 rule declaration {

 <identifier>

 { %*SYMBOLS{ $<identifier> } = True; }

 '=' <termlist>

 \n

 }

 rule block {

 :my %*SYMBOLS = CALLERS::<%*SYMBOLS>;

 '{' \n*

 <statement>*

 '}' \n*

 }

 rule termlist { <term> * % ',' }

 token term { <variable> | <number> }

 token variable {

 <identifier>

 <?{ %*SYMBOLS{ $<identifier> } }>

 }

Chapter 9 parsing with grammars

130

 token number { \d+ }

 token identifier { <:alpha> \w* }

}

There are a few changes to the previous version of this grammar:

the rule statement has been renamed to declaration and the new rule

statement parses either a declaration or a block.

All the interesting bits happen in the block rule. The line :my

%*SYMBOLS = CALLERS::<%*SYMBOLS>; declares a new dynamic variable

%*SYMBOLS and initializes it with the previous value of that variable.

CALLERS::<%*SYMBOLS> looks through the caller, and the caller’s caller, and

so on for a variable %*SYMBOLS, and thus looks up the value corresponding

to the outer scope. The initialization creates a copy of the hash, such that

changes to one copy do not affect the other copies.

Let’s take a look at what happens when this grammar parses the

following input:

a = 1

b = 2

{

 c = a, 5, b

}

After the first two lines, %*SYMBOLS has the value {a => True, b =>

True}. When rule block parses the opening curly bracket on the third

line, it creates a copy of %*SYMBOLS. The declaration of c on the fourth line

inserts the pair c => True into the copy of %*SYMBOLS. After rule block

parses the closing curly brace on the last line, it exits successfully, and the

copy of %*SYMBOLS goes out of scope. This leaves us with the earlier version

of %*SYMBOLS (with only the keys a and b), which then goes out of scope

when TOP exits.

Chapter 9 parsing with grammars

131

 Scoping Through Explicit Symbol Tables
Using dynamic variables for managing symbol tables usually works pretty

well, but there are some edge cases where a more explicit approach works

better. Such edge cases include those where there are so many symbols

that copying becomes prohibitively expensive, or where more than the

topmost scope must be inspected, or when copying the symbol table is

impractical for other reasons.

Consequently, you can write a class for your symbol table (which in the

simplest case uses an array as a stack of scopes) and explicitly call methods

on it when entering and leaving scopes, when declaring a variable, and for

checking whether a variable is known in a scope:

class SymbolTable {

 has @!scopes = {}, ;

 method enter-scope() {

 @!scopes.push({})

 }

 method leave-scope() {

 @!scopes.pop();

 }

 method declare($variable) {

 @!scopes[*-1]{$variable} = True

 }

 method check-declared($variable) {

 for @!scopes.reverse -> %scope {

 return True if %scope{$variable};

 }

 return False;

 }

}

Chapter 9 parsing with grammars

132

grammar VariableLists {

 token TOP {

 :my $*ST = SymbolTable.new();

 <statement>*

 }

 token ws { <!ww> \h* }

 token statement {

 | <declaration>

 | <block>

 }

 rule declaration {

 <identifier>

 { $*ST.declare($<identifier>) }

 '=' <termlist>

 \n

 }

 rule block {

 '{' \n*

 { $*ST.enter-scope() }

 <statement>*

 { $*ST.leave-scope() }

 '}' \n*

 }

 rule termlist { <term> * % ',' }

 token term { <variable> | <number> }

 token variable {

 <identifier>

 <?{ $*ST.check-declared($<identifier>) }>

 }

 token number { \d+ }

 token identifier { <:alpha> \w* }

}

Chapter 9 parsing with grammars

133

The class SymbolTable has the private array attribute @!scopes, which

is initialized with a list containing a single, empty hash {}. Entering a

scope means pushing an empty hash on top of this array, and when leaving

the scope it is removed again through the pop method call. A variable

declaration adds its name to the topmost hash, @!scopes[*-1].

Checking for the presence of a variable must not just consider the

topmost hash, because variables are inherited to inner scopes. Here we

go through the all scopes in reverse order, from innermost to outermost

scope. The order of traversal is not relevant for a simple Boolean check,

but if you need to look up information associated with the variable, it is

important to adhere to this order to reference the correct one.

Token TOP creates a new object of class SymbolTable, declaration

calls the declare method, and token variable calls method check-

declared. The rule block calls enter-scope before parsing the statement

list, and leave-scope afterward. This works, but only if the statement list

can be parsed successfully; if not, rule block fails before it manages to call

leave-scope.

Perl 6 has a safety feature for such situations: if you prefix a statement

with LEAVE, Perl 6 calls it for you at routine exit, in all circumstances where

this is possible (even if an exception is thrown). Since the LEAVE phaser9

only works in regular code and not in regexes, we need to wrap the regex in

a method:

method block {

 $*ST.enter-scope();

 LEAVE $*ST.leave-scope();

 self.block_wrapped();

}

9 https://docs.perl6.org/language/phasers

Chapter 9 parsing with grammars

https://docs.perl6.org/language/phasers
https://docs.perl6.org/language/phasers

134

rule block_wrapped {

 '{' \n*

 <statement>*

 '}' \n*

}

Now we have the same robustness as the approach with dynamic

variables, and more flexibility to add extra code to the symbol table, at the

cost of more code and increased effort.

9.7 Summary
Perl 6 grammars are a declarative way to write recursive descent parsers.

Without backtracking, they are predictive; at each point, we know what list

of tokens to expect.

The recursive nature of grammars comes with the risk of left recursion,

a situation where a recursive path does not consume any characters, and

so leads to an infinite loop.

In spite of the top-down nature of grammars, writing them typically

happens from the bottom up: starting with lexical analysis, and then

moving up to parsing larger structures.

Complex languages require additional state for successful and precise

parsing. We have seen how you can use dynamic variables to hold state

in grammars, how their scope corresponds to lexical scoping in the input,

and how symbol tables can be written and integrated into grammars.

Chapter 9 parsing with grammars

135
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_10

CHAPTER 10

Extracting Data
from Matches
So far we have put great effort into parsing various file formats, and the

result of our efforts was a match object, or Nil if the match failed.

For most purposes, knowing whether a match succeeded or not is only

the first step—we want to extract useful data from a successful match.

In principle, we could inspect the resulting match object and extract

all the necessary data. If it does not offer enough resolution, we can add

captures to make it more fine-grained. This approach can work, but it

tends to be frustrating to write, and brittle in its result.

But before we look into a solution, let’s talk more about the problem.

The match object we get from a successful regex match or grammar parse

is a parse tree. Its structure is determined directly by the structure of the

grammar, and the information found in the parse tree is all about the strings

matched, and the positions where they were found in the input string.

The reason we want to parse a string is typically to do some processing

with its contents. If the input is an INI file, we want to extract the sections

and their key/value pairs; if it is source code of a programming language,

we might want to check it for some traits (like a linter), or compile it

to a lower-level format. This processing step, whatever it is, usually

should not be tied directly to the parse tree, but rather to a more abstract

representation of the contents. This representation is called an abstract

syntax tree, or AST for short.

136

ASTs can look very different depending on the use case. For a JSON

parser, the AST could directly be the data structure that had been serialized

into the JSON string, so a mixture of arrays, hashes, strings, numbers, and

Booleans. For a programming language, you typically construct an AST out

of a collection of custom classes that capture all the aspects of the input

that you care about; these AST classes typically also contain annotations

referencing input line numbers, so that error messages can properly

identify the location of the error.

10.1 Action Objects
Grammars and match objects come with two features that offer a more

resilient and extensible approach to extracting data. The first and simpler

one is that you can attach an arbitrary data structure to a Match1 object,

and later access it through the .made attribute:

if 'abc' ~~ /\w/ {

 $/.make({'a' => 'bc'});

 say $/.made; # Output: {a => bc}

}

If the match object is in the special variable $/, you can also call

make DATA:

if 'abc' ~~ /\w/ {

 make {'a' => 'bc'};

 say $/.made; # Output: {a => bc}

}

You can probably see where this is going: you can build a data

structure that is to be part of the final AST, and attach it to the match object

with make.

1 https://docs.perl6.org/type/Match

Chapter 10 extraCting Data from matChes

https://docs.perl6.org/type/Match
https://docs.perl6.org/type/Match

137

Where do you do that? One option would be inline code objects, { ... },

but that couples the grammar very tightly to the AST generation code.

This is where the second feature comes in: action objects.

An action object is one that you pass to a .parse or .subparse call

on a grammar. Henceforth, whenever a named regex matches successfully,

the regex engine calls a method for you; it searches for a method with the same

name as the regex, and if one exists, calls it with the match object as the argument.

If such a method does not exist, nothing happens, and no error is raised.

Here is an example of an action that evaluates a mathematical

expression as it is parsed:

grammar MathExpression {

 token TOP { <sum> }

 rule sum { <product>+ % '+' }

 rule product { <term>+ % '*' }

 rule term { <number> | <group> }

 rule group { '(' <sum> ')' }

 token number { \d+ }

}

class MathEvalAction {

 method TOP($/) {

 make $<sum>.made;

 }

 method sum($/) {

 make [+] $<product>».made;

 }

 method product($/) {

 make [*] $<term>».made;

 }

 method term($/) {

 make $/.values[0].made;

 }

Chapter 10 extraCting Data from matChes

138

 method group($/) {

 make $<sum>.made;

 }

 method number($/) {

 make $/.Int;

 }

}

my $match = MathExpression.parse(

 '4 + 5 * (1 + 3)',

 actions => MathEvalAction.new,

);

say $match.made; # Output: 24

The MathExpression grammar should be familiar from the previous

chapter; what’s new is another class, MathEvalAction, that has a method

for each regex in the grammar. Each method takes $/ as its sole argument,

to which the match object is bound. It calls make to attach something to

this match object.

The idea in this class is that each method attaches a number to the

current match object corresponding to the current match. Hence, if it parses

the string 2 * (1+4), it attaches the number 2 to the match object that

parsed the 2. It does the same for the numbers 1 and 4, and then attaches

the result of the sum, 5, to the match object that parsed 1+4, then again the

number 5 to the match object that parsed (1+4), and finally it evaluates the

product, and attaches the number 10 to the top-level match object.

Reading from bottom to top, the number method converts the string

to a number by calling the Int method on the match object. It attaches

the resulting integer to the match object. Match group simply takes the

attached value from the match from $<sum>, and attaches it to its own

match object.

Chapter 10 extraCting Data from matChes

139

The rule term matches one of two alternatives. $/.values returns a list

of all match objects, which is always one element. make $/.values[0].

made thus propagates the attached value from either match and attaches it

to its own match object.

The rule product parses a list of terms, separated by asterisks. The

action method of the same name takes the numbers attached to each term

and multiplies them. The ». syntax in $<term>».made calls the method

made on each element of the list $<term>, and returns a list of all the results.

If you are unable to write the » character with your keyboard, you can

instead use >>, so this becomes $<term>>>.made.

[*] LIST inserts the * operator between each element of the LIST,

hence calculating the product of all these values.

Since the rules sum and product have the same structure, so do their

action methods. sum uses [+] to create the sum of all the numbers attached

to the match objects one level below.

Finally, token TOP just calls sum, so method TOP in the action class just

passes on the value attached to $<sum>.

Here is a match tree, annotated with the value of each .made in the

right column:

sum => ⌜4 + 5 * (1 + 3)⌟ 24
 product => ⌜4 ⌟ 4
 term => ⌜4 ⌟ 4
 number => ⌜4⌟ 4
 product => ⌜5 * (1 + 3)⌟ 20
 term => ⌜5 ⌟ 5
 number => ⌜5⌟ 5
 term => ⌜(1 + 3)⌟ 4
 group => ⌜(1 + 3)⌟ 4
 sum => ⌜1 + 3⌟ 4
 product => ⌜1 ⌟ 1
 term => ⌜1 ⌟ 1
 number => ⌜1⌟ 1

Chapter 10 extraCting Data from matChes

140

 product => ⌜3⌟ 3
 term => ⌜3⌟ 3
 number => ⌜3⌟ 3

In each branch, the most indented matches are those whose action

method is called first, so number before term before product before sum.

This ordering guarantees that each action method can rely on the presence

of the .made attributes on submatches.

Writing an action method needs only knowledge of the captures of

the corresponding regex and what their .made attribute contains. At no

point in the action did we need to look deeper into the nested structure

of a match tree. If you structure your actions this way, you are flexible to

change the grammar. Whenever you modify a regex, you can rest assured

that you only have to touch the action method corresponding to it, and

you never have to worry that another action method might depend on the

regex you just touched.

When you write an action method for proto tokens, you should

be aware that action methods are called for the successfully matching

candidate, but not for the proto as a whole. So if your grammar contains

the lines

proto token value {*};

token value:sym<string> { <string> }

token value:sym<number> { <number> }

then the grammar engine might call a method called

value:sym<string> or a method value:sym<number> for you, but not a

method value.

Chapter 10 extraCting Data from matChes

141

10.2 Building ASTs with Action Objects
The previous section illustrated the mechanics of action objects and

methods, and it built something akin to an AST, but it wasn’t a tree. Since

trees are the most common result of a successful parse, I want to present

another action class for the same grammar that creates an abstract syntax

tree during the parse.

To save us the trouble of writing a separate tree class, we’ll use a nested

array to represent the tree. The first element of the tree will be the operator;

further elements are the operands. Thus, for the expression 1 + 2 + 3, the

result is ['+', 1, 2, 3]. Since nested expressions are indicated by nested

arrays, we don’t need an operator for a group of parentheses: hence the

expression 2 * (3 + 4) is represented as ['*', 2, ['+', 3, 4]].

Let’s take a look at the action class, and how we can use it:

class MathASTAction {

 method reduce($op, @list) {

 return @list[0] if @list.elems == 1;

 return [$op, |@list];

 }

 method TOP($/) {

 make $<sum>.made;

 }

 method sum($/) {

 make self.reduce('+', $<product>».made);

 }

 method product($/) {

 make self.reduce('*', $<term>».made);

 }

 method term($/) {

 make $/.values[0].made;

 }

Chapter 10 extraCting Data from matChes

142

 method group($/) {

 make $<sum>.made;

 }

 method number($/) {

 make $/.Int;

 }

}

say $match = MathExpression.parse(

 '4 + 5 * (1 + 3)',

 actions => MathASTAction.new,

);

say $match.made.perl;

This code (along with the grammar definition from the previous

section) produces the output

["+", 4, ["*", 5, ["+", 1, 3]]]

The action methods for TOP, term, group, and number are identical

to those from the previously discussed action class. The interesting

parts are the action methods for sum and product. Let’s look at the latter,

representative of both:

method reduce($op, @list) {

 return @list[0] if @list.elems == 1;

 return [$op, |@list];

}

method product($/) {

 make self.reduce('*', $<term>».made);

}

Chapter 10 extraCting Data from matChes

143

If we used just make ['*', |$<term>».made] as the body of method

product, the AST for 1 + 2 would come out as ['+', ['*', 1], ['*', 2]],

because each sum parses a product expression. We don’t want that extra

level of one-element multiplications, so we make a special case. If only one

term is parsed, return just that term. Otherwise, return an array made up of

the operator, and then the ASTs from all the terms.

Since this special case is used twice (for sum and for product), it

makes sense to factor it out into a method, which I’ve called reduce. The

method reduce uses the syntax [$op, |@list] to create an array of $op

concatenated with the elements of @list. The | flattens out @list; if we

didn’t use it, the result would be ['+', [1, 2]] instead of ['+', 1, 2].

10.3 Keeping State in Action Objects
The action classes from the previous section were a collection of methods,

but they did not keep any state. One could argue they weren’t “real”

objects. In fact, we could remove the .new calls on the action classes, and

pass the classes straight into the grammar, and the examples would work

as before. The state is the AST that is being built and it is stored in the

.made attributes of the match objects.

That is a common pattern, but it doesn’t have to be this way. The

objects that you use as action objects are normal Perl 6 objects, and you

can do anything you want with them. You can store data in them, and

even reuse the same action object across multiple calls to your grammar’s

.parse method.

Reading that, you might wonder why we went through the trouble

of keeping a symbol table in a dynamic variable in an earlier example,

instead of using an action object. The distinction here is that the symbol

table affected the outcome of the parse; referencing an undeclared variable

made the match fail. Grammars are meant to be independent of their

action objects, so that you can modify and even swap out action classes

without influencing the grammar.

Chapter 10 extraCting Data from matChes

144

Here is an example of a grammar that parses a single variable

assignment and collects these variables in a hash:

class VariableCollection {

 has %.definitions;

 method TOP($/) {

 %.definitions{ $<identifier> } = $<termlist>.made;

 }

 method number($/) { make $/.Int }

 method identifier($/) { make $/.Str }

 method termlist($/) { make $<term>».made }

 method term($/) { make $/.values[0].made }

}

grammar VariableAssignment {

 rule TOP { \s* <identifier> '=' <termlist> }

 rule termlist { <term> * % ',' }

 token term { <identifier> | <number> }

 token number { \d+ }

 token identifier { <:alpha> \w* }

 token ws { <!ww> \h* }

}

my $actions = VariableCollection.new;

my @lines = 'a = 1', 'c = a, 5, b', 'b = 2';

for @lines -> $line {

 unless VariableAssignment.parse($line, :$actions) {

 die qq[Invalid input: "$line"];

 }

}

Chapter 10 extraCting Data from matChes

145

say $actions.definitions;

 # Output: {a => [1], b => [2], c => [a 5 b]}

In this example, has %.definitions declares a public attribute; a

piece of state attached to the object that can be accessed from the outside.

The syntax :$actions is shorthand for actions => $actions.

This pattern of using a stateful action object and parsing partial input

one item at a time is very useful for stream processing; if you receive

data piecewise and need to access results before you have received the

complete input, or if your system runs continuously and there is an

unceasing flow of input.

10.4 Summary
If you supply an action object to your grammar’s parse call, its method of

the same name as the regexes is called for you. You can use this to build an

abstract syntax tree from your grammar.

Furthermore, you can keep state in this action object and use this

mechanism to parse piecewise but related input.

Chapter 10 extraCting Data from matChes

147
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_11

CHAPTER 11

Generating Good
Parse Error Messages
When a regex match or a grammar parse fails, it returns Nil. If this is a case

where a failure was not expected, we can inform the user that some form of

input (maybe a configuration file) was invalid.

For a simple input, like an e-mail address or a URL, this piece of binary

information might be satisfactory. For a larger configuration or source file,

we really want to give the user more information. Why is the input invalid?

And if we can’t answer that, where is the error?

Or put another way: when a parse fails, we want to identify the

location, and possibly the reason for the parse fail, and generate a good

error message.

11.1 Exploring the Problem
There is no general mechanism built into Perl 6 that produces good parse

error messages, and I don’t see how there could be such a mechanism. The

reason is that even in a successful parsing run, it is normal for individual

regexes and tokens to fail.

148

Let’s consider just two lines from an earlier grammar, VariableLists:

rule termlist { <term> * % ',' }

token term { <identifier> | <number> }

Suppose this matches the string 1,a. The token term first tries to match

identifier and number against the string. The identifier regex fails;

however, number succeeds. Then, termlist itself matches the comma,

and it’s term’s turn again. This time the identifier branch successfully

matches the string a, and number fails to match. Finally, termlist tries

to match the next comma, and fails, but the overall termlist match

succeeds.

In this example, we’ve seen three failed matches as part of a successful

match. So what distinguishes such a “normal” failed match from one that

fatally causes a whole parse to abort?

Technically, a fatally failing regex is one whose failure propagates

upward all the way to TOP. But that doesn’t help us create good error

messages. By the time it fails, we don’t yet know if it’s going to propagate

up the whole way. And once it has propagated up to regex TOP, it’s too late

to extract useful information from a failed match.

A different perspective of match failures offers more insight. There

are basically two ways that a match can go wrong. One case is when we

start to parse something, we can only match the first part of it, but not the

rest. In the case of mathematical expressions, this could be an opening

parenthesis where there is no corresponding closing parenthesis, or a

plus sign not followed by any expression. The second case is where one

or more alternatives are expected, but none match. For instance, a JSON

parser might expect an object, an array, a number, or a string, but the

input character is a $—something that simply isn’t valid JSON outside of a

quoted string.

Chapter 11 GeneratinG Good parse error MessaGes

149

11.2 Assertions
Sequential alternatives allow you to create good error messages. The

general pattern is this:

rule group {

 '(' <sum>

 [')' || { die "Cannot find closing ')'" }]

}

This regex tries to match the closing parenthesis. If this does not

work, rather than silently failing, it uses a { ... } code block to throw an

exception using the built-in die function. The exception aborts the parse,

and if no caller of the parse method catches it, the program exits with

an unsuccessful return code. To be an effective tool for improving error

reporting, we have to apply this same pattern to many more locations.

Describing the error is only enough in the most trivial of inputs. In any

multiline input, we need to point out the location of the error; otherwise,

the user will have a hard time fixing the problem.

We can access the position through the match object $/, and use that

to calculate a line number. Since this is something we will need in quite a

few places, it is best to extract that logic into a method. We can then call

this method from a regex with the same syntax as we would call a regex,

with the addition of a pair of parentheses around an argument:

grammar MathExpression {

 token TOP { <sum> }

 rule sum { <multiplication>+ % '+' }

 rule multiplication { <term>+ % '*' }

 rule term { <number> | <group> }

 rule group {

 '(' <sum>

 [')' || <error("no closing ')'")>]

 }

Chapter 11 GeneratinG Good parse error MessaGes

150

 token number { \d+ }

 method error($msg) {

 my $parsed = self.target.substr(0, self.pos);

 my $line-no = $parsed.lines.elems;

 die "Cannot parse mathematical expression: "

 ~ "$msg at line $line-no";

 }

}

say MathExpression.parse("(\n1");

What was previously

[')' || {die "Cannot find closing ')'" }]

is now

[')' || <error("no closing ')'")>]

Note that we replaced the direct die function call with a call to the

custom error method. This method has a few tricks up its sleeve to

determine the line number: the .target method returns the string that

the grammar currently matches against and self.pos extracts the current

parsing position. self.pos is equivalent to $/.to, except that the latter

only works at the end of a parse, or when a capture has been generated.

Where do these methods come from? By declaring a type a grammar, it

automatically gets the parent class Grammar1 (which provides the parse and

subparse methods), which in turn inherits from Cursor,2 which supplies

the .target and .pos methods.

1 https://docs.perl6.org/type/Grammar
2 https://docs.perl6.org/type/Cursor

Chapter 11 GeneratinG Good parse error MessaGes

https://docs.perl6.org/type/Grammar
https://docs.perl6.org/type/Cursor
https://docs.perl6.org/type/Grammar
https://docs.perl6.org/type/Cursor

151

The Str.lines3 method decomposes a string into a list of lines it

contains; calling .elems on this list produces the number of lines. For a

string without any line breaks, this produces the number 1. Note than

even the most hardcore C programmers count line numbers starting from

one (not zero), so the number from lines.elems fits our purpose as a line

number.

The output from the example code is as follows:

Cannot parse mathematical expression: no closing ')' at line 2

The error reporting correctly reports the error as being on line number

2 since the \n in the input string introduced a line break.

11.3 Improved Position Reporting
The error method we saw in the previous section is a good first

approximation, but there are more things we can do to improve its accuracy.

The first is pretty simple. In many cases, an implicit <.ws> call can

match whitespace before a [<something> || <error(...)>] block. In a

grammar where ws can match newlines, this can move the reported error

location down, which doesn’t match our intuitive understanding of how

we want error location reported.

We can remedy this by removing the trailing whitespace from the

$parsed string:

my $parsed = self.target.substr(0, self.pos)\

 .trim-trailing;

Another improvement strategy is to provide some context in the

error message. For example, the Rakudo Perl 6 parser prints the source

code around the error location and marks the error location with an eject

symbol, ⏏.

3 https://docs.perl6.org/type/Str#routine_lines

Chapter 11 GeneratinG Good parse error MessaGes

https://docs.perl6.org/type/Str#routine_lines
https://docs.perl6.org/type/Str#routine_lines

152

We can do the same in our own grammars:

method error($msg) {

 my $parsed = self.target.substr(0, self.pos)\

 .trim-trailing;

 my $context = $parsed.substr($parsed.chars - 10 max 0)

 ~ '⏏' ~ self.target.substr($parsed.chars, 10);
 my $line-no = $parsed.lines.elems;

 die "Cannot parse mathematical expression: $msg\n"

 ~ "at line $line-no, around " ~ $context.perl

 ~ "\n(error location indicated by ⏏)\n";
}

This version of the error method constructs a context string of the ten

characters before and after the error location (though it uses $chars max 0

to prevent negative indices). It produces output like this:

Cannot parse mathematical expression: no closing ')'

at line 1, around "(1 + 2⏏"
(error location indicated by ⏏)

or with the input string "1 + 2 5", you get

Cannot parse mathematical expression: no closing ')'

at line 1, around "(1 + 2⏏ 5"
(error location indicated by ⏏)

Note that this extra information is only useful if the reported position

actually matches that of a syntax error. If you are not confident in the

correctness of the reported error location, you should omit such details.

Chapter 11 GeneratinG Good parse error MessaGes

153

11.4 High-Water Marks
The technique discussed so far relies on manual insertion of

|| <error(...)> pieces into the grammar. If you want to avoid this—by

sacrificing a bit of clarity in the error messages—you can use another

technique. Even if not, you might use it in combination with explicit error

reporting.

Just like a high-water mark is pushed a bit higher each time a sea or

river level reaches a new record, we can record the furthest position that

our grammar has reached. We can do this through a dynamic variable

that we set to self.pos if self.pos is larger than the current value of the

variable. This high-water mark then forms the basis of our error location

reporting.

A handy place to do such recording is the ws token, because it is

already called in many places, and it is a natural delimiter of primitive

tokens. Whenever the regex position reaches a new high-water mark, we

can also record the name of the rule that called ws. This information is

available through the callframe4 built-in subroutine:

method ws() {

 if self.pos > $*HIGHWATER {

 $*HIGHWATER = self.pos;

 $*LASTRULE = callframe(1).code.name;

 }

 callsame;

}

The callsame function calls the ws method from the parent class

(which in a grammar is Grammar), passing along the same arguments as

the current method received. In other words, the ws method you see here

wraps the default ws regex. We could delegate to any other named regex in

the grammar here simply by calling it, for instance with self.customws.

4 https://docs.perl6.org/type/CallFrame#sub_callframe

Chapter 11 GeneratinG Good parse error MessaGes

https://docs.perl6.org/type/CallFrame#sub_callframe
https://docs.perl6.org/type/CallFrame#sub_callframe

154

This ws method assumes that the dynamic variables $*HIGHWATER and

$*LASTRULE have been declared somewhere. If we do that in token TOP

(as seen in a previous example), we run into a problem: once the parse

fails, the variables aren’t available anymore for reporting the error. Again

a wrapper comes to the rescue: we can wrap the parse method that all

grammars have:

method parse($target, |c) {

 my $*HIGHWATER = 0;

 my $*LASTRULE;

 my $match = callsame;

 self.error($target) unless $match;

 return $match;

}

The syntax |c in a signature captures all remaining arguments, both

named and positional. This ensures that calls like MathExpression.

parse($string, rule => 'multiplication') continue to work.

callsame then passes the same arguments to the original parse method.

The crucial part is the call to the error method when the match failed.

Of course, the error method also needs some fiddling to make use of the

$*HIGHWATER and $*LASTRULE dynamic variables:

method error($target) {

 my $parsed = $target.substr(0, $*HIGHWATER)\

 .trim-trailing;

 my $line-no = $parsed.lines.elems;

 my $msg = "Cannot parse mathematical expression";

 $msg ~= "; error in rule $*LASTRULE" if $*LASTRULE;

 die "$msg at line $line-no";

}

Chapter 11 GeneratinG Good parse error MessaGes

155

This error method uses $*HIGHWATER instead of self.pos to

determine the position where the parse failed and $*LASTRULE for

reporting the last parsing rule that made progress.

There is another change of note here: instead of accessing self.

target, the error method gets the target string as an argument. This is due

to a detail in grammar mechanics that we have glossed over so far. When

you call SomeGrammar.parse(...), this is a method call on the type object

SomeGrammar. But the grammar engine needs to keep state somewhere,

so the method parse creates an instance of the grammar—the very same

instance that you can access in self inside a method called from a regex.

This detail is important, because method parse calls error after the

parse has finished, so the instance is gone. Trying to call self.target

or self.pos dies with the message Cannot look up attributes in a

MathExpression type object.

This high-water mark–based error reporting correctly identifies 1+

as an unfinished sum, 1* as an unfinished multiplication, and (1 as an

incomplete group expression.

11.5 Parser Combinator and FAILGOAL
Parsing matching pairs of delimiters with some content between them is

common enough that Perl 6 has a special syntax for it. Instead of writing

token group {

 '(' <sum> ')'

}

you can write

token group {

 '(' ~ ')' <sum>

}

Chapter 11 GeneratinG Good parse error MessaGes

156

where the ∼ is a parser combinator that rearranges the following tokens. In

this example, the visual benefit is not large, but if the regex expression for the

delimited content is longer, it is nice to have the delimiters closer together.

More importantly, if the closing delimiter cannot be found, the regex

engine calls a method called FAILGOAL. In the default implementation, this

just fails the match. We can override this method to produce an error message:

grammar MathExpression {

 token TOP { <sum> }

 rule sum { <multiplication>+ % '+' }

 rule multiplication { <term>+ % '*' }

 rule term { <number> | <group> }

 rule group { '(' ~ ')' <sum> }

 token number { \d+ }

 method FAILGOAL($goal) {

 my $cleaned = $goal.trim;

 self.error("No closing $cleaned");

 }

 method error($msg) {

 my $parsed = self.target.substr(0, self.pos)\

 .trim-trailing;

 my $context = $parsed.substr($parsed.chars - 10 max 0)

 ~ '⏏' ~ self.target.substr($parsed.chars, 10);
 my $line-no = $parsed.lines.elems;

 die "Cannot parse mathematical expression: $msg\n"

 ~ "at line $line-no, around " ~ $context.perl

 ~ "\n(error location indicated by ⏏)\n";
 }

}

MathExpression.parse('(1');

Chapter 11 GeneratinG Good parse error MessaGes

157

The FAILGOAL method’s argument is the source code of the regex

part that matches the closing delimiter. The trim5 method removes

surrounding whitespace, the output of which we feed into a version of the

error method seen earlier in this chapter.

The output is as follows:

Cannot parse mathematical expression: No closing ')'

at line 1, around "(1⏏"
(error location indicated by ⏏)

11.6 Which Techniques to Use?
There are no hard-and-fast rules on which error reporting techniques to

use for which kind of project. The only rule is that the more people who

actually use your grammar, the more effort you should put into making the

error messages good.

You can combine all these techniques too: use the [<expected> ||

<error('...')>] pattern in place where you need it, put a FAILGOAL

method into place, and use the high-water mark technique to get a

good error position in those cases where you did not explicitly install an

assertion for better error reporting.

You might be put off by the fact that in the later examples in this

chapter, over half of the source code of the grammar is now dedicated

to error reporting. But we used a pretty simplistic grammar to start with,

which artificially reduced its size.

Moreover, most of the error reporting code is pretty generic, and can

be factored out into a role, and reused in many grammars. That is what the

Grammar::ParseError6 module offers.

5 https://docs.perl6.org/type/Str#method_trim
6 https://modules.perl6.org/dist/Grammar-ErrorReporting

Chapter 11 GeneratinG Good parse error MessaGes

https://docs.perl6.org/type/Str#method_trim
https://modules.perl6.org/dist/Grammar-ErrorReporting
https://docs.perl6.org/type/Str#method_trim
https://modules.perl6.org/dist/Grammar-ErrorReporting

158

Finally, I’d argue that good parse errors are important enough to

warrant this kind of attention.7

11.7 Summary
Generating good error messages from failed parsing processes is not easy

because failing regexes are a normal part of parsing. Thus, we can generate

error messages only if, at some point, we decide to commit to a parsing

outcome, and produce an error message when that commitment did not

hold up.

This commitment can be explicit in the form of a sequential alternative

that triggers an exception in its second branch. Or we can make it implicit

whenever a rule parses whitespace, using the high-water mark method.

Finally, the ∼ parser combinator allows you to match a piece of input

that is enclosed by delimiters, and offers a hook to improve the error

message when the closing delimiter does not match.

7 Sadly, much of the academic literature on parsing ignores this aspect of parsing,
presumably because it is hard to quantify the quality of an error message.

Chapter 11 GeneratinG Good parse error MessaGes

159
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_12

CHAPTER 12

Unicode and Natural
Language
Text that computers deal with tends to fall into two categories: things that

are meant to be consumed by humans (like prose), and things that are

meant to be consumed by software (machine code and encrypted files

come to mind).

The data formats we have looked at so far fall somewhere in the

middle: they are made to be unambiguously understood by software, but

still able to be read and written by humans.

In this chapter, we take a brief look into the complexities hiding in the

realm of natural language—text aimed squarely at human consumption,

but still stored as a series of bytes.

This chapter is not an introduction to natural language processing; its

intention is to discuss issues that you have to be aware of when processing

multilanguage input.

12.1 Writing Systems
Written English is based on an alphabet, a set of letters usually

corresponding to phonemes (elements of spoken language).

160

Abjads or consonant alphabets follow a similar structure, but only

contain consonants. There may or may not be vowel marks that indicate

where vowels should be inserted while speaking the words, but those

markers don’t generally indicate which vowel to insert. Arabic and Hebrew

fall into this category, as do some of the ancient North African and West

Asian scripts.

A syllabary is a writing system in which each syllable has its own

character. A famous example is Hiragana, a component of the Japanese

writing system.

In contrast, ideograms convey an idea or a meaning. They appear

in the Chinese writing system, often in combination with phonetic

characters, resulting in several thousand characters in total.

There are a few places where different writing systems affect how

programmers deal with text processing: you cannot assume that words are

actually made out of letters. In general, text segmentation (the process of

splitting up text into words, sentences, and other units) becomes rather

language specific. Not all languages and writing systems use spaces to

delimit words, or even delimit words at all. See the Unicode technical

report on text segmentation1 for more information.

The built-in character classes such as \d and \w match characters

from all scripts, not just the Latin script. This means that if you use \d+ to

match a number, it could match 42 as well as ٤٢ (which are Eastern Arabic

numerals2). While this might be surprising, converting the string "٤٢" to a

number works just the same as with our “normal” Arabic digits.

1 http://unicode.org/reports/tr29/
2 https://en.wikipedia.org/wiki/Eastern_Arabic_numerals

Chapter 12 UniCode and natUral langUage

http://unicode.org/reports/tr29/
http://unicode.org/reports/tr29/
https://en.wikipedia.org/wiki/Eastern_Arabic_numerals
https://en.wikipedia.org/wiki/Eastern_Arabic_numerals
http://unicode.org/reports/tr29/
https://en.wikipedia.org/wiki/Eastern_Arabic_numerals

161

12.2 Bytes, Code Points, Graphemes,
and Glyphs

A computer stores text as a series of bytes. An encoding such as UTF-8,

UTF-32, or ISO-8859-1 describes how a byte or a sequence of bytes maps

to a code point.

A code point is the Unicode consortium’s description of a character

as it is used in human language. It consists of a number between zero and

about 1.1 million, as well as a description of the character using uppercase

ASCII characters, like GREEK SMALL LETTER OMICRON. The Unicode

properties database records further information, such as if the character is

a letter, a lowercase letter, is typically part of left-to-right writing, and so on.

 Grapheme Clusters
Not every code point corresponds to a full character. Some languages allow

free combination of base characters with combining characters. You might

be familiar with the acute and grave accents used in French, as in “née”

(born) or “après” (after). For compatibility with other legacy encodings, the

characters é and è exist as stand-alone code points, so called precomposed

characters. But they can also be written as the base character e, followed by

the COMBINING ACUTE ACCENT or the COMBINING GRAVE ACCENT.

In French, the acute and grave accents go only on a few base

characters, but in other writing systems, such restrictions don’t apply. For

instance in the Devanagari script, common on the Indian subcontinent,

vowels can be written as combining characters that are applied to a

consonant base character. In such cases, not all possible combinations of

base and combining characters exist as precomposed Unicode codepoints.

This means something a reader would recognize as a character might

be stored as several code points—typically a base character followed by

one or more combining characters. We call this a grapheme cluster, or

grapheme for short.

Chapter 12 UniCode and natUral langUage

162

In Perl 6, the basic unit of a string is the grapheme cluster. If you ask a

string for its number of characters by calling its chars method, the answer

is the number of grapheme clusters:

say "e\c[COMBINING GRAVE ACCENT]".chars; # Output: 1

The \c[NAME] syntax inserts a code point by name into a double-

quoted string.

In this case, a precomposed character happens to exist, but this is not

necessary for Perl 6 to consider it a single grapheme; therefore, if you chose

x as the base character, no precomposed character exists, and Perl 6 still

classifies it as a single character.

In regexes it is no different: any construct that can match a single

character, such as a character class, can match a grapheme cluster:

if "e\c[COMBINING GRAVE ACCENT]" ~~ / ^ . $ / {

 say "A single grapheme cluster";

}

When text is rendered, either for printing or for display on a screen, the

rendering engine can choose to combine several grapheme clusters into a

single glyph (a shape that can be displayed). For instance, in English, the

sequence of the letters f and i might be rendered as a ligature, a single

glyph that contains two characters, which is typically narrower than the

two characters separately.

To ignore combining characters while matching a regex, you can

use the :ignoremark modifier; :m for short. Thus, /:ignoremark uber/

matches the string "über". This is useful when you suspect a user might

have trouble entering diacritic marks, but still want to give them search

results that include such marks.

Chapter 12 UniCode and natUral langUage

163

Glyphs
The process of selecting glyphs during rendering is highly dependent

on the output medium and the font, and hence Perl 6 offers no built-in

handling of strings at the glyph level.

You should be aware that even in monospaced fonts, Chinese,

Japanese, and Korean don’t fit into the space of a single regular character,

but take up twice as much horizontal space. Full-width characters are

(typically Latin) characters stretched to the same width as a Chinese

character. You might need to consider the width of a character when

parsing indented blocks or horizontally aligned tables.

The main takeaway is that, even with grapheme clusters and

monospaced fonts, you can’t assume much about the rendered width of a

character.

12.3 Unicode Properties
The huge character repertoire in Unicode makes it impractical and error-

prone to enumerate all characters in any given category, like letters,

numbers, punctuation, mathematical symbols, etcetera. Instead, you can

specify that you want to a match a character from a given category. These

are character classes defined by the Unicode consortium.

Unicode properties are written with a colon (:) followed by the

property name inside angle brackets. For example, <:Letter> matches any

letter—at the time of writing, a total of 63409 code points. A new Unicode

version could expand that total even further.

You can freely combine Unicode properties by using + and -, thus

<:Letter+:Digit> matches either a letter or a digit. You can also

combine property-based character classes with enumerations. If you want

to match a word without the character e, you can do that with the regex

 /<:Letter-[eE]>+/.

Chapter 12 UniCode and natUral langUage

164

The classification of a character in letter, digit, punctuation, etcetera is

called the general category, and you can query it with the uniprop method

of a character:

say "a".uniprop; # Output: Ll

Here Ll is a shorthand for Lowercase_Letter. The full set of possible

values is available from the official documentation.3

There are more categories that you can query:

say "a".uniprop('Script'); # Output: Latin

say "a".uniprop('Block'); # Output: Basic Latin

The same combination of category and property can be used in a

regex; /<:Block('Basic Latin'>)>/ matches any character from the

“Basic Latin” block.

In the case of grapheme clusters, both the uniprop method and the

regex match against a property apply to the base character, and hence

the string "x\c[COMBINING TILDE]" can be successfully be matched by

<:Letter>, but not by <:Mark>, the category that identifies combining

mark code points.

12.4 Summary
The wide variety of natural languages and writing systems implies that many

assumptions we (often implicitly) make about language don’t hold: not

every logical or visual character is a single code point, not all words are made

out of letters, and not all words are delimited by spaces, to name but a few.

Perl 6 offers some relief by treating grapheme clusters as single

characters, and by offering solid support for matching by Unicode property

inside character classes.

3 https://docs.perl6.org/language/regexes#Unicode_properties

Chapter 12 UniCode and natUral langUage

https://docs.perl6.org/language/regexes#Unicode_properties
https://docs.perl6.org/language/regexes#Unicode_properties
https://docs.perl6.org/language/regexes#Unicode_properties

165
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6_13

CHAPTER 13

Case Studies
The previous chapters have equipped you with knowledge of how

grammars work, about error reporting, and data extraction.

Let’s take a look at some real-world input formats and how we can

parse them.

The main restriction for these case studies is size: parsing a language

like SQL is quite approachable with grammars, but is a big task due to the

sheer vastness of the language. You likely wouldn’t enjoy reading 40 pages

about it.

We will explore parsing three formats, with emphasis on different

techniques. S-Expressions are a simple but fairly typical data serialization

format, with a small amount of whitespace significance. Then, we will

explore parsing mathematical expressions, but with a slightly different

approach than in the examples from earlier chapters. We use an operator

precedence parser to keep the grammar flat. Finally, a Python-like

minilanguage can teach us how to parse an indentation-based format.

13.1 S-Expressions
Symbolic Expressions, better known as S-Expressions, are a notation for

trees as nested lists that are used for the Lisp programming language.

In S-Expressions, a list is delimited by parentheses, and elements in a

list are separated by whitespace. The S-Expression

(a b (c d))

166

corresponds to the Perl 6 data structure

["a", "b", ["c", "d"]]

List elements are usually called atoms. An atom can be an unquoted

identifier, and can usually contain all sorts of punctuation. For example

(+ 1 2) is the Lisp expression for 1 + 2. You can quote atoms containing

whitespace by using double quotes:

(display "Hello, World")

Most dialects in the large family of Lisp programming languages

use S-Expressions both for program code and for data structures. They

differ, however, in what exactly is allowed in an S-Expression. Some allow

floating-point literals, and others differ in what characters are allowed

inside an identifier.

 Parsing S-Expressions
Let’s start with parsing atoms. An atom can be an integer like 12345, an

identifier such as lisp, or a quoted string "like this". In an extensible

grammar, such a list of alternatives should be implemented as a proto

token:

grammar S-Expression {

 proto token atom {*}

 token atom:sym<identifier> {

 <[a..z A..Z =*:]>

 <[a..z A..Z 0..9 _ =*:]>*

 }

 token atom:sym<integer> { <[+-]>? <[0..9]>+ }

 token atom:sym<string> { '"' ~ '"' <string_contents> }

 token string_contents { [| <-[\\"]>+ | \\ .]* }

}

Chapter 13 Case studies

167

Matching a potentially signed integer is pretty straightforward.

The difficulty with S-Expression identifiers is not how to parse them,

but deciding what to allow in them. This depends on the Lisp dialect being

parsed. In the preceding case, the first character allows Latin letters and

the symbols =, *, and :; any following character also allows a digit and the

underscore. This is constructed such that an integer is unambiguously

parsed as such, and cannot also be parsed as an identifier.

This setup does not allow a single + or - to match as an identifier, and

allowing it by simply adding it to the first character class would create

ambiguity. If we want to allow this, we could handle that as a separate

branch:

token atom:sym<identifier> {

 | <[a..z A..Z =*:]> <[a..z A..Z 0..9 _ =*:]>*

 | <[+-]>

}

Parsing a string follows the pattern laid out in an earlier chapter: two

quotes on the outside and the string contents in between. The string

contents here are parsed by a separate rule to make the data extraction

easier. String contents consist of “regular” permissible characters

(everything except a backslash or a double quote), or an escape sequence:

a backslash followed by a single, arbitrary character.

Chapter 13 Case studies

168

 You might have noticed that perl 6 allows you to use the hyphen
or minus character (-) inside an identifier, which i’ve used previously
in the class name S-Expression, but not in the name of the regex
string_contents. the reason for this inconsistency is that the
- character harbors a potential ambiguity: <-alpha-hexdigit>
could be a single negated named character class alpha-hexdigit,
or match anything that is neither in alpha nor in hexdigit. perl 6
disambiguates toward the first possibility, but avoiding this situation
entirely still seems worthwhile.

Now that we have some grammar rules, we should test the core

functionality:

use Test;

my %atoms =

 integer => ('1', '01234', '-23', '+12'),

 identifier => ('abc', '=', '*_*'),

 string => ('""', '"abc"', Q'"abc\"def"', Q'"\\"'),

 ;

my %not-atoms =

 identifier => ('', '_'),

 string => ('', '"""', Q'"\"',),

 ;

for %atoms.keys.sort -> $atom {

 for %atoms{$atom}.list -> $test {

 ok S-Expression.parse($test,

 rule => "atom:sym<$atom>"),

 "Parsing '$test' as atom $atom";

 }

}

Chapter 13 Case studies

169

for %not-atoms.keys.sort -> $atom {

 for %not-atoms{$atom}.list -> $test {

 nok try {S-Expression.parse($test,

 rule => "atom:sym<$atom>") },

 "Not parsing '$test' as atom $atom";

 }

}

done-testing;

We set up a few input strings that an atom should match (%atoms) and

some that they should not match (%not-atoms). Next, we iterate through

these examples, and call S-Expression.parse with the example string and

the corresponding rule, and wrap that in a call to ok for those strings we

expect to be parsed, and nok (the negation of ok) for the strings we expect

not to match.

For cases where we expect a parse failure, the test code wraps calls to

S-Expression.parse in a try { ... } block. This is not strictly necessary,

because we don’t have advanced error reporting that would cause an

exception to be thrown. However, such a thing might be added later, and

we shouldn’t punish future improvements by causing test failures.

Finally, instead of using the usual plan NUMBER; at the start, the test

code uses done-testing; at the end. This alleviates the need to count tests

yourself at the cost of reducing the ability to detect if we failed to run any

tests we planned.

The tests all pass, so we can move on to the higher-level bits. To parse

a list, we need a pair of parentheses containing a whitespace-delimited list

of atoms:

token expression {

 '(' ~ ')' [<atom>* % \s+]

}

Chapter 13 Case studies

170

Now we can also handle the case of nested lists, where an atom is a

sublist:

token atom:sym<expression> { <expression> }

Finally we specify that an S-Expression is a list of expressions,

optionally with whitespace between, before, and after it:

token TOP { \s* [<expression> \s*] * }

This is a first shot, and most likely doesn’t work completely. You

might have noticed that all regexes are token and not rule. This is

because whitespace is significant (it delimits atoms) and using rule risks

inadvertently using up this significant whitespace. Hence the grammar

misses cases where whitespace should be allowed, but there is nothing

yet in there to parse it. A good way to approach this is to write tests and

run them:

my @tests = '()', '(abc)', ' (abc) ', '(abc)',

 '(1)', '(+1)', '(-1)', '(() ())';

for @tests -> $t {

 ok S-Expression.parse($t), "can parse '$t'";

}

This fails two tests:

not ok 20 - can parse '(abc)'

not ok 24 - can parse '(() ())'

We can fix this by adding more whitespace parsing to the expression

token:

token expression {

 \s* '(' ~ ')' [\s* <atom>* % \s+ \s*]

}

Chapter 13 Case studies

171

Here is the grammar in its entirety:

grammar S-Expression {

 token TOP { \s* [<expression> \s*] * }

 token expression {

 \s* '(' ~ ')' [\s* <atom>* % \s+ \s*]

 }

 proto token atom {*}

 token atom:sym<expression> { <expression> }

 token atom:sym<identifier> {

 <[a..z A..Z =*:+-]>

 <[a..z A..Z 0..9 _ =*:+-]>*

 }

 token atom:sym<integer> { <[+-]>? <[0..9]>+ }

 token atom:sym<string> { '"' ~ '"' <string_contents> }

 token string_contents { [| <-[\\"]>+ | \\ .]* }

}

 Data Extraction
The action class corresponding to the S-Expression grammar is mostly

straightforward. There are just two things a bit out of the ordinary. The first

is that it is useful to distinguish between the S-Expressions (a) and ("a"),

in other words between an identifier and a quoted string. To preserve that

distinction, the action class returns an Identifier object from this class:

class Identifier { has $.str }

This can be done with such an action method:

method atom:sym<identifier>($/) {

 make Identifier.new(str => $/.Str);

}

Chapter 13 Case studies

172

The second thing to consider is what to do with backslash-escaped

characters inside quoted strings. There seems to be a consensus among

S-Expression implementations that \\ is a backlash and \" is a double

quote character; however, the semantics of a backslash followed by

another different character is not agreed upon. Here we will simply strip

the escaping backslash, so \\ becomes \ and \a becomes a:

method string_contents($/) {

 make $/.Str.subst(:global, / \\ (.) /, -> $/ { $0 });

}

The action method for integers converts the match to an integer, and

the other methods simply pass on the .made value of their captures:

class Identifier { has $.str }

class S-Actions {

 method TOP($/) {

 make $<expression>».made;

 }

 method expression($/) {

 make $<atom>».made;

 }

 method atom:sym<expression>($/) {

 make $<expression>.made;

 }

 method atom:sym<identifier>($/) {

 make Identifier.new(str => $/.Str);

 }

 method atom:sym<integer>($/) {

 make $/.Int;

 }

Chapter 13 Case studies

173

 method atom:sym<string>($/) {

 make $<string_contents>.made;

 }

 method string_contents($/) {

 make $/.Str.subst(:global, / \\ (.) /, -> $/ { $0 });

 }

}

Let’s write a short test for that:

my $m = S-Expression.parse(

 Q'((a "b") 23 "ab \\cd")',

 actions => S-Actions.new,

);

ok $m, 'Can parse S-Expression with action method';

is-deeply $m.made,

 [[[Identifier.new(str => "a"), "b"], 23, "ab \\cd"],],

 "correct data extracted";

This test passes, so it’s time to wrap it into a subroutine that will

become the public API for the S-Expression parser:

sub parse-s-expression(Str $input) {

 my $m = S-Expression.parse($input,

 actions => S-Actions.new);

 unless $m {

 die "Cannot parse S-Expression";

 }

 return $m.made;

}

For brevity, we won’t improve error message generation for this

grammar; any of the techniques discussed in Chapter 11 could be

used here.

Chapter 13 Case studies

174

13.2 Mathematical Expressions
and Operator Precedence Parsers

“If all you have is a hammer, everything looks like a nail1.” If you work with

a shiny new tool, such as regexes and grammars, you tend to overlook the

option to use other tools to solve your problem.

In this spirit, I want to revisit the earlier example of parsing

mathematical expressions, and this time do less in the grammar and more

in the accompanying code. Instead of introducing a new parsing level for

each precedence level, this iteration of the grammar ignores precedence

altogether and simply parses a list of alternating terms and operators. The

action method then uses a table of operator precedences to create the

appropriate tree. This is called an operator precedence parser, also known

as OPP for short.

There are two main advantages to this approach. It makes it much

easier to insert a precedence level between two existing levels, and the flat

structure of the grammar makes the parsing much faster.

 A Simple Operator Precedence Parser
The core of the grammar is the part that parses an expression as a list of

terms separated by infix operators2:

rule expression { <term> + % <infix> }

To make the list of infix operators extensible, it must be a proto token:

proto token infix { * }

token infix:sym<*> { <sym> }

1 After Abraham Maslow, 1966. See https://en.wikipedia.org/wiki/
Law_of_the_instrument.

2 An infix operator is one that stands between two terms, like the asterisk * in 2 * 4.

Chapter 13 Case studies

https://en.wikipedia.org/wiki/Law_of_the_instrument
https://en.wikipedia.org/wiki/Law_of_the_instrument

175

token infix:sym</> { <sym> }

token infix:sym<+> { <sym> }

token infix:sym<-> { <sym> }

token infix:sym<**> { <sym> }

In addition to the four usual operators, this list includes **, which is

commonly used for exponentiation and which has tighter precedence than

multiplication.

It won’t surprise you that term includes numbers, but we can also

parse subexpressions in parentheses in term, and function calls like cos(0)

or sqrt (4):

proto token term { * }

token term:sym<integer> {

 <[+-]>? <[0..9]>+

}

rule term:sym<parenthesized> {

 '(' ~ ')'<expression>

}

rule term:sym<function> {

 <name=.identifier> '(' ~ ')' <expression>

}

token identifier { <[a..z]>+ }

Time to tie it all together:

use Grammar::ErrorReporting;

grammar MathExpression does Grammar::ErrorReporting {

 rule TOP { <.ws> <expression> }

 rule expression { <term> + % <infix> }

 proto token infix { * }

 token infix:sym<*> { <sym> }

Chapter 13 Case studies

176

 token infix:sym</> { <sym> }

 token infix:sym<+> { <sym> }

 token infix:sym<-> { <sym> }

 token infix:sym<**> { <sym> }

 proto token term { * }

 token term:sym<integer> {

 <[+-]>? <[0..9]>+

 }

 rule term:sym<parenthesized> {

 '(' ~ ')' <expression>

 }

 rule term:sym<function> {

 <name=.identifier> '(' ~ ')' <expression>

 }

 token identifier { <[a..z]>+ }

}

Grammar::ErrorReporting is a module that provides an error

method with fancy position output, but also installs a FAILGOAL method

that triggers when a ~ expression fails to find its goal. If you use the

moritzlenz/perl6-regex-alpine Docker image, this module is already

included. Otherwise, you can install it by running

zef install Grammar::ErrorReporting

on the command line.

This grammar now produces a flat parse tree. For example, the input

string 1 + 2 * 5 produces the following match object:

⌜1 + 2 * 5⌟
 expression => ⌜1 + 2 * 5⌟
 term => ⌜1⌟

Chapter 13 Case studies

177

 infix => ⌜+⌟
 sym => ⌜+⌟
 term => ⌜2⌟
 infix => ⌜*⌟
 sym => ⌜*⌟
 term => ⌜5⌟

Now we need to write the operator precedence parser that turns the

flat array [1, '+', 2, '*', 5] into a tree grouped by precedence, so

[1, '+', [2, '*', 5], or even better ['+', 1, ['*', 2, 5]].

The crux is that whenever we look at an operator for the first time,

we don’t know if its adjacent operands actually belong to that operator

(as happens in the case of 2 * 5), or if the next operator has a higher

precedence and steals the right operand.

We can solve this by first putting an operator and its left operand

onto a stack. When we visit the next operator, and that second operator

has a lower precedence than the first one, we can remove the previous

operator and its operands from the stack, turn it into an expression, and

then continue by putting the second operator on the stack. If the second

operator has a higher precedence, we just put the second operator on the

stack.

Once the end of the input list is reached, we can apply the reduction

step until only one element is left on the stack. This is what the algorithm

looks like in code:

class MathActions {

 method opp-parse(@tokens) {

 sub opp-reduce(@stack) {

 my ($term1, $op, $term2) = @stack.splice(*-3, 3);

 @stack.push([$op, $term1, $term2]);

 }

Chapter 13 Case studies

178

 my %prec = '+' => 1, '-' => 1,

 '*' => 2, '/' => 2,

 '**' => 3;

 my @stack = @tokens[0];

 for @tokens[1..*] -> $op, $term {

 while @stack > 2

 && %prec{$op} <= %prec{@stack[*-2]} {

 opp-reduce(@stack);

 }

 @stack.push($op, $term);

 }

 opp-reduce(@stack) while @stack > 1;

 return @stack[0];

 }

}

Method opp-parse expects a list of tokens, starting with a term, then

an infix operator, and so on, with every other token being an operator.

The first element is a subroutine opp-reduce, which implements the

reduction step: taking the last two terms and the operator between them

from the stack, and adding them back as an array. Thus, if the stack has

the elements 1, '+', 2, '*', 4, a call to this function modifies it into

[1, '+', ['*', 2, 4]], and a second call further changes it to ['+', 1,

['*', 2, 4]].

%prec is a hash that maps each infix operator to a numerical

precedence level, where higher numbers correspond to operators binding

their arguments more tightly.

Subsequently, the @stack is initialized with the first term (from @

tokens[0]), and then the loop runs over the rest of the tokens two

elements at a time. As long as the stack has at least three elements (and

thus at least one operator), and the current operator has lower precedence

than the previous operator, the code calls the opp-reduce function. In any

case, the current operator and term are added to the stack.

Chapter 13 Case studies

179

After all initial tokens have been visited, all that is left to do is to repeat

the reduction step until only one element is left on the stack. This is then

the parse tree we are interested in.

Note that by parsing parenthesized expressions in token term, we don’t

have to deal with parentheses as operators in the operator precedence

parser. More traditional implementations only use lexical analysis and an

operator precedence parser to check and handle parenthesis pairs.

The rest of the action methods are pretty straightforward in

comparison:

method TOP($/) { make $<expression>.made }

method expression($/) {

 my @tokens = $/.caps.map({.value.made});

 make self.opp-parse(@tokens);

}

method infix:sym<*>($/) { make ~$<sym> }

method infix:sym</>($/) { make ~$<sym> }

method infix:sym<+>($/) { make ~$<sym> }

method infix:sym<->($/) { make ~$<sym> }

method infix:sym<**>($/) { make ~$<sym> }

method term:sym<integer>($/) { make $/.Int }

method term:sym<parenthesized>($/) {

 make $<expression>.made;

}

method term:sym<function>($/) {

 make [$<name>.made, $<expression>.made];

}

method identifier($/) { make $/.Str }

The only interesting bit here is the expression method. Remember

that method opp-parse wants terms interleaved with operators, but the

match of rule expression produces two arrays, $<term> and $<infix>.

We could do the interleaving ourselves, but Perl 6 offers a better solution:

Chapter 13 Case studies

180

the method caps in class Match3 returns all captures in the order that they

appear in the string, which is exactly the interleaved order we want. The

method caps returns the captures wrapped in Pair4 objects, so we need

to call .value to reach the match object, and then .made to access the

Abstract Syntax Tree (AST) attached to the match. The map method does

this to all elements that caps returns.

Again, we can wrap the calls to the grammar into a subroutine:

sub parse-math-expression(Str $input) {

 my $match = MathExpression.parse($input,

 actions => MathActions.new);

 die "Cannot parse input" unless $match;

 return $match.made;

}

and write some tests. Here is just a single one:

use Test;

plan 1;

is-deeply parse-math-expression('1 + 2 * 3**4 * 5 + 6'),

 ["+", ["+", 1, ["*", ["*", 2, ["**", 3, 4]], 5]], 6],

 'correct parse tree from nested expression';

 A More Flexible Approach
The grammar and the operator precedence parser discussed in the previous

section work, but the operator precedence parser is not very extensible. You

can easily apply a role that adds another infix:sym<something> rule, but

you can’t define a precedence for it, because %prec is a lexical variable that

cannot be accessed outside opp- parse.

3 https://docs.perl6.org/type/Match.html#method_caps
4 https://docs.perl6.org/type/Pair

Chapter 13 Case studies

https://docs.perl6.org/type/Match.html#method_caps
https://docs.perl6.org/type/Pair
https://docs.perl6.org/type/Match.html#method_caps
https://docs.perl6.org/type/Pair

181

A possible workaround is to create some kind of registry by which an

extension could add an operator, but the problem goes deeper. There are

several use cases for which we need more metadata about operators. One

such case is if the parser should be able to handle different associativities.

If an infix operator appears twice or more (or different operators with the

same precedence occur in the same expression), the expression 1 OP 2 OP 3

could be interpreted as (1 OP 2) OP 3 (left associative) or as 1 OP (2 OP 3)

(right associative). For the summation + and multiplication * operators,

precedence does not matter. For difference - and division /, the typical

associativity is left, but for exponentiation most programming languages

assume right associativity. We need a way to store the associativity along

with the precedence for an operator.

There are also other kinds of operators. Postfix operators stand

after (post) the term. For instance, the factorial operator (!) stands for

the product of all positive integers up to and including the number it

follows. To illustrate: 6! is 6 * 5 * 4 * 3 * 2 * 1 or 720. Now we need

metainformation about the type of operator, and since postfix operators

break the rule about alternating terms and operators5, the operator

precedence parser also needs a way to reliably distinguish terms from

operators.

The common approach to meet these difficulties is to gather all

the information about an operator into an object. Then, the operator

precedence parser can do a type check to see if something is an operator

and then ask it for its precedence, associativity, and type (infix, postfix,

prefix). What’s more, there no longer needs to be a central place where all

the types are stored. When you create an extension role for the grammar,

you also create an extension role for the action class, which in turn returns

an object for the newly introduced operator.

5 For example, the expression 3! + 2 has a term, followed by a postfix operator,
followed by an infix operator.

Chapter 13 Case studies

182

The minimalistic approach (that does not yet handle associativity or

other types of operators) goes like this:

class Operator {

 has Str $.symbol is required;

 has Numeric $.precedence is required;

 method new(Str $symbol, Numeric $precedence) {

 self.bless(:$symbol, :$precedence);

 }

}

The action methods for the operators then return Operator objects:

method infix:sym<+>($/) { make Operator.new(~$<sym>, 1) }

method infix:sym<*>($/) { make Operator.new(~$<sym>, 2) }

method infix:sym<**>($/) { make Operator.new(~$<sym>, 3) }

more action methods go here

The method opp-parse now has access to the operators as objects and

can thus use their precedence directly for comparison:

for @tokens[1..*] -> $op, $term {

 opp-reduce(@stack)

 while @stack >= 3

 && $op.precedence <= @stack[*-2].precedence;

 @stack.push($op, $term);

}

The comparison $op.precedence <= @stack[*-2].precedence is

for left-associative operators; when you change the less-than-or-equal

(<=) to a strict less-than (<), you get the behavior of right-associative

operators. If you want to explore operator precedence parsers more,

you could add an associativity attribute to class Operator, give the

exponentiation operator right precedence, and change the comparison

to take the associativity into account. The expression 2 ** 3 ** 4 should

Chapter 13 Case studies

183

come out as ['**' 2, ['**', 3, 4]]. If you feel really adventurous, you

might even try to add postfix operators to the grammar and the operator

precedence parser.

13.3 Pythonesque, an Indentation-Based
Language

Python, YAML, CoffeeScript, and other programming languages and data

formats use indentation to encode the structure of the program or data.

For instance, this Perl 6 program:

if 1 < 2 {

 say "Inside the branch";

}

say "outside the branch";

would look like this in Python 3:

if 1 < 2:

 print("Inside the branch")

print("outside the branch")

After a line that ends with colon (:), the next line must be more

indented than the previous one. All further lines that share the same

indentation as the second line belong to the block. If a line has fewer

leading spaces than a previous block, this completes all open blocks with

more leading spaces.

A full grammar for Python or YAML would be too much to fit into this

book, so let’s explore the concepts behind parsing an indentation-based

language without most of the unrelated complexities.

The language we will parse here is a small subset of Python, and I’ve

named it Pythonesque. It consists of expressions that contain numbers,

variables, and common infix operators, as well as if-statements with

indented bodies. The if-statements can be nested.

Chapter 13 Case studies

184

The following code is a small example program written in

Pythonesque:

a = 1

if a:

 x = 1

 y = 2

 if x + 1 < 3:

 z = x + y

 a = z * 4

b = 5

The top level starts out with zero indentation, the first indentation level

uses at least one space (here four), and the second level must be further

indented than the second one (here ten spaces).

 A Grammar for Pythonesque
We’ll keep the expression parsing pretty minimalistic:

grammar Pythonesque {

 token ws { \h* }

 rule expression { <term> + % <operator> }

 token term { <identifier> | <number>}

 token number { \d+ }

 token identifier { <:alpha> \w* }

 token operator {

 <[-+=<>*/,]>| '==' | '<=' | '>=' | '!='

 }

 # more rules go here later

}

Chapter 13 Case studies

185

In a real-world use case, we’d likely use proto tokens for both terms

and operators; here we just use the bare minimum to parse expressions.

If you want to enforce operator precedence, you could use the operator

precedence parser from the previous case study.

Since whitespace is significant in Pythonesque, ws only matches

horizontal space (which we allow between tokens; i.e., you can write a=1

as a = 1). Nevertheless, we can only do that when we make sure that

whitespace at the start of a line is matched by a different rule:

token line {

 ^^ (\h*) { self.handle_indentation($0) }

 <statement> $$ \n*

}

proto token statement { * }

token statement:sym<expression> {

 <expression>

}

The core concept here is that a line of input consists of leading

indentation (which might be zero in length, hence the \h*), then a

statement, and finally the end-of-line $$ followed by one or more newline

characters. Note that the amount of leading whitespace must be checked.

If it’s the same as the previous line, all is fine. If it matches the indentation

of an outer scope, the inner scopes must be finished. If it matches none of

these, we’ve found an error. To do that check, we need an array of currently

active (not yet finished) indentation levels:

token TOP {

 :my @*INDENTATION = (0,);

 <line>*

 $

}

Chapter 13 Case studies

186

method handle_indentation($match) {

 my $current = $match.Str.chars;

 my $last = @*INDENTATION[*-1];

 if $current > $last {

 die "Inconsistent indentation: expected "

 ~ "at most $last, got $current spaces";

 }

 elsif $current < $last {

 my $idx = @*INDENTATION.first(:k, $current);

 if defined $idx {

 for $idx + 1 .. @*INDENTATION.end {

 @*INDENTATION.pop;

 }

 }

 else {

 die "Unexpected indentation level: $current.";

 }

 }

}

Token TOP initializes a dynamic variable @*INDENTATION with a zero as

its first element. As the next step, we’ll implement adding elements to the

end of the array, but for now we just assume that it contains the number of

spaces of each indentation level. When we parse this input:

if a:

 x = 1

 if x + 1 < 3:

 z = x + y

Chapter 13 Case studies

187

the array @*INDENTATION contains the numbers 0, 4, and 10. If the current

indentation is ten spaces (as determined by $match.Str.chars; a more

sophisticated analysis might weight tabs differently than spaces, or forbid

mixed tabs and spaces), nothing happens. If there are currently more

leading spaces, this must be an error, because increased indentation is

only allowed after an if-statement.

If the current indentation level is less than the last one recorded in

@*INDENTATION, we have to search @*INDENTATION for the current value.

This is what my $idx = @*INDENTATION.first(:k, $current); does. The

method first6 searches for the first array element that matches a certain

criterion, here being equal to $current. With the :k modifier, it returns the

index of that array element. If none was found, an undefined value comes

back, and the if defined $idx check triggers, throwing an exception.

If it is found, the current indentation is that of a previous scope. We

then need to close all more deeply indented inner scopes, which is what

@*INDENTATION.pop does for each such scope.

When we parse an if-statement, we know that the line after it must

have more indentation than the current line, but not yet how much more.

We could signal that by setting a second variable, or by pushing a special

value onto @*INDENTATION that signals this fact. This sentinel value7 could

be a value that is not a valid indentation (like -1 or 0.5), or a separate type:

grammar Pythonesque {

 my class NEW_INDENTATION { }

 rule statement:sym<if> {

 'if' <expression> ':'

 { @*INDENTATION.push(NEW_INDENTATION) }

 }

 # rest of the grammar here

}

6 https://docs.perl6.org/type/List#routine_first
7 https://en.wikipedia.org/wiki/Sentinel_value

Chapter 13 Case studies

https://docs.perl6.org/type/List#routine_first
https://en.wikipedia.org/wiki/Sentinel_value
https://docs.perl6.org/type/List#routine_first
https://en.wikipedia.org/wiki/Sentinel_value

188

Now we have to handle the case of NEW_INDENTATION in method

handle_indentation:

method handle_indentation($match) {

 my $current = $match.Str.chars;

 my $last = @*INDENTATION[*-1];

 if $last ~~ NEW_INDENTATION {

 my $before = @*INDENTATION[*-2];

 if $current > $before {

 @*INDENTATION[*-1] = $current;

 }

 else {

 die "Inconsistent indentation: expected "

 ~ "more than $before, got $current spaces";

 }

 }

 elsif $current > $last {

 die "Inconsistent indentation: expected "

 ~ "at most $last, got $current spaces";

 }

 # rest of the method as before

}

This marks the point where our grammar can successfully parse the

example given at the start of the section, and equally important, reject

examples containing invalid indentation.

However, if you try to write action methods for this grammar, you’ll

soon notice that it is unreasonably hard to do, because the grammar

does not communicate when a parsed scope begins or ends. Thus, the

action methods need to look at the amount of whitespace at the start of a

line, and then use @*INDENTATION (or maintain its own version thereof)

to reconstruct a picture of the current and outer scopes. This is an

unfortunate duplication of effort and also a rather high amount of coupling

of the action methods to the grammar’s internals.

Chapter 13 Case studies

189

A cleaner solution is to offer some kind of API that indicates to the

action object when the grammar enters or leaves a scope. A nice trick to do

this is to call rules that always match zero characters as a kind of marker:

token enter_scope { <?> }

token leave_scope { <?> }

token TOP {

 :my @*INDENTATION = (0,);

 <.enter_scope>

 <line>*

 $

 <.leave_scope>

}

The construst <?> in the tokens enter_scope and leave_scope is an

empty zero-width assertion, which always successfully matches the empty

string.

In addition to the calls from token TOP, we need to insert a call to self.

enter_scope() into method handle_indentation, where it encounters

the NEW_INDENTATION sentinel, and add a call self.leave_scope() when

a scope is finished, thus accompanying the line that does @*INDENTATION.

pop():

method handle_indentation($match) {

 my $current = $match.Str.chars;

 my $last = @*INDENTATION[*-1];

 if $last ~~ NEW_INDENTATION {

 my $before = @*INDENTATION[*-2];

 if $current > $before {

 @*INDENTATION[*-1] = $current;

 self.enter_scope();

 }

 ...

Chapter 13 Case studies

190

 elsif $current < $last {

 my $idx = @*INDENTATION.first(:k, $current);

 if defined $idx {

 for $idx + 1 .. @*INDENTATION.end {

 @*INDENTATION.pop;

 self.leave_scope();

 }

 }

 ...

Now the action objects have a place to hook into that allows them to

handle nesting of statements with reasonable effort.

 Action Objects
When I first wrote action objects for Pythonesque, I made everything an

array: an if-statement was an array whose first element was the string

"if", the second was the condition, and the third the body of the

if- statement. Expressions were also arrays, so the second element was

also an array. I quickly lost track of the generated AST.

To solve this issue I kept expressions as arrays, but moved operators,

variables, and if-statements into separate classes:

class Operator {

 has Str $.action is required;

}

class Variable {

 has Str $.name is required;

}

class If {

 has $.condition;

 has @.block;

}

Chapter 13 Case studies

191

With this setup done, the action methods for the simple statements are

not very surprising:

class Pythonesque::Actions {

 # more methods go here

 method statement:sym<if>($/) {

 make If.new(condition => $<expression>.made);

 }

 method statement:sym<expression>($/) {

 make $<expression>.made;

 }

 method expression($/) { make $/.caps».value».made.Array }

 method identifier($/) { make Variable.new(name => $/.Str) }

 method term($/) { make $/.caps[0].value.made; }

 method number($/) { make $/.Int }

 method operator($/) { make Operator.new(action => $/.Str) }

}

Note how the If-object in method statement:sym<if> is initialized

with its condition, but not with its body. This is because it’s not yet parsed

at the time that statement:sym<if> runs.

To get the nesting of statements right, we need to maintain a stack of

scopes. The bottom element (or index 0, when implemented as an array)

is the outermost scope, and the top element (or index *-1) corresponds to

the current scope.

When we leave a scope (except the outermost scope, also called the

“mainline”), it belongs to an if-statement, and that if-statement is the last

statement to have been parsed in the next-outermost scope. So we need to

remove the current scope for the stack and set it as the body of the

if- statement:

class Pythonesque::Actions {

 has @.scopes;

 method TOP($/) {

Chapter 13 Case studies

192

 make @.scopes[0];

 }

 method line($/) {

 @.scopes[*-1].push($<statement>.made)

 }

 method enter_scope($/) { @.scopes.push([]) }

 method leave_scope($/) {

 if @.scopes > 1 {

 my $last = @.scopes.pop;

 @.scopes[*-1][*-1].block = $last.list;

 }

 }

 # rest of the class goes here as before

}

Testing this with various example strings shows that this mostly works,

but fails in an interesting corner case: if the last line of the input has at least

two levels of indentation, only the first level of indentation is present in the

AST. For instance, this input:

if 1:

 if 2:

 x = 2

produces this AST:

[If.new(condition => [1], block => [])

which lacks the second if-statement and its body. Since the body

of If-objects is populated in leave_scope calls, it stands to reason that

leave_scope is not called. Adding debug say statements to the action

methods enter_scope and leave_scope confirms this: for the input shown

before, enter_scope is called three times (once for the mainline and once

for each inner scope), but leave_scope is called only once.

Chapter 13 Case studies

193

leave_scope can be called from two places: from token TOP (which

works), and from method handle_indentation. This makes the

error clearer: handle_indentation only calls leave_scope when

handle_indentation is called with an indentation less than the current

level. But, when no unindented line is parsed at the end, no such call to

handle_indentation happens. We can fix this bug by inserting such a

call artificially at the end:

token TOP {

 :my @*INDENTATION = (0,);

 <.enter_scope>

 <line>*

 $

 # leave all open scopes:

 { self.handle_indentation('') }

 <.leave_scope>

}

With this fix in place, all tests pass, and we can consider this

experiment a success.

You can view the full code, including tests (and some small

enhancements that make testing of error conditions easier), on GitHub8.

13.4 Summary
This chapter has shown you elements of real-world parsers that are used

to process real-world data: recursion, operator precedence parser, and

parsing a structure based on indentation levels. The last example also

demonstrated tradeoffs in the interplay between regexes and code.

8 https://github.com/apress/perl-6-regexes-and-grammars/blob/master/
chapter-13-case-studies/pythonesque.p6

Chapter 13 Case studies

https://github.com/apress/perl-6-regexes-and-grammars/blob/master/chapter-13-case-studies/pythonesque.p6
https://github.com/apress/perl-6-regexes-and-grammars/blob/master/chapter-13-case-studies/pythonesque.p6
https://github.com/apress/perl-6-regexes-and-grammars/blob/master/chapter-13-case-studies/pythonesque.p6

194

Throughout the course of this book, you have learned about the basics

about Perl 6, the building blocks of Perl 6 regexes, how regexes and Perl 6

code interact, and captures, which offer a way to extract information from

regex matches.

The chapters on regex mechanics and techniques have given you

the background to understand how regexes work, and how you can use

them to parse common data formats. Grammars allow you to structure

and reuse regexes. The action object mechanism facilitates access to the

resulting matches, and the discussion on error reporting shed light on

what to do when a match fails.

Armed with the background from the previous chapters, and the

applications from this chapter, you should be able to write your own

grammars and parsers. I will leave you with a quote from Larry Wall,

creator of Perl and inventor of Perl 6: Have the appropriate amount of fun!

Chapter 13 Case studies

195
© Moritz Lenz 2017
M. Lenz, Parsing with Perl 6 Regexes and Grammars,
https://doi.org/10.1007/978-1-4842-3228-6

Index

A
Abjads, 160
Abstract syntax tree (AST), 3

with action objects, 141–143
definition, 135

Action method
for integers converts,

172–173
S-Expressions, 171

Action objects
ASTs, 141–142
defined, 137
.made attribute, 140
mathematical expression,

137–138
proto tokens, 140
variables collection,

144–145
Anchors

^ and $, 19
matches, 20
newline character, 19
zero-width

assertion, 30–32
Atom, 166

B
Backreferences

named captures, 52
prime number, 52
quoted string, 52
string, 52

string repetition operator, 53
Backtracking

correctness, 70
first group, 66
frugal quantifier, 71
HTML tags, 70–71
performance, 68–69
possessive quantifier, 69
second character, 66, 68

Binary Linux packages, 8
but operator, 107
Bytes, 92, 161

C
caps method, 180
Character(s)

base, 161
classes

https://doi.org/10.1007/978-1-4842-3228-6

196

predefined, 21–23
Unicode characters, 23
user-defined, 24

combining, 161
full-width, 163
general category, 164
precomposed, 161

Code point, 161
Combining characters, 161
Comb method, 38
Conjunction, 30
Control flow, 64
Control structures, 14

D
Data formats

e-mail address, 75
INI file, 76
invalid inputs, 78
JSON, 76
quoted strings (see Quoted

strings)
use anchors, 79

Declarative prefix, 72
Deterministic finite

automaton (DFA)
automaton for matching

strings, 59, 61
lookup table, 58
Powerset construction, 61

die function, 149
Disjunctions, 28–29
Docker-based installation, 8–9

E
Eastern Arabic numerals, 160
End of line (eol), 118–119
Error messages

die function, 149
custom error method, 150
error location, 151–152
FAILGOAL method, 156, 157
grammar, 157
high-water mark

callframe, 153
dynamic variable, 153–154
self.pos, 153
ws method, 153

match failures, 148
parse fail, 147
parser combinator, 156

F
Factorial operator, 181
FAILGOAL method, 156,

157, 176
Finite state machine, 57
from product, 111
Frugal quantifier, 27, 71
Full-width characters, 163

G, H
Glyphs

defined, 162
font, 163
full-width characters, 163

Character(s) (cont.)

Index

197

Grammar(s)
body, 99
defined, 1, 98–99
inheritance

MySQL, 100, 102
SQL, 100, 102

JSON, 104
match object, 110–111
mathematical expression, 110
precedence, 112
from product, 111
proto regexes, 104–106, 108
regexes methods, 98–99
role composition, 102–103
subparse method, 99

Grapheme cluster (grapheme),
161–162

Greedy quantifier, 27, 71

I, J
Ideograms, 160
Infix operators, 174

K
Kleene star, 4

L
Lazy quantifier. See Frugal

quantifier
Left recursion, 113
Lexical analysis

backtracking, 95
calculator, 94

Lexical scoping with dynamic
variables, 128, 130

Ligature, 162
Lisp programming

languages, 166
Literals

meta characters vs., 18
strings, 17–18

Longest token matching,
declarative prefix, 72

Look-ahead assertion, 31
Look-behind assertions, 32

M
Match object

array, 48
.made attribute, 136
named captures, 56
nest captures, 49
positional captures, 55
quantified captures, 49

Meta characters
defined, 18
vs. literals, 18

Metasyntactic. See Meta
characters

Modifiers
:exhaustive, 38
:global, 35
:ignorecase, 36
:ratchet, 37

Index

198

runtime behavior of compiled
regex, 37–38

:sigspace, 37

N
Named captures, 50–51, 55
Named regexes

angle bracket syntax, 92
byte, 92
code objects, 92
cursor object, 92
syntactic forms, 93

Nondeterministic finite
automata (NFA)

code block {}, 72
empty block {}, 73
advantage and disadvantage, 64
automaton for matching

strings, 63
declarative prefix, 72
defined, 62
epsilon transitions, 62

O
Operator precedence

parser (OPP), 113
advantages, 174
associativity, 181
caps method, 180
create extension role, 181
crux, 177

defined, 174
Grammar::ErrorReporting, 176
infix operators, 174
match object, 176–177
opp-parse method, 178–179
opp-reduce function, 178

Opp-parse method, 178–179

P
Parser combinator, 155–156
Parse tree, 135
Parsing with grammars

assembling, 116
Grammar::Tracer module

Config::INI, 117
diagnostic tool, 117
keyval, 119–120
output, 120–121
TOP/eol, 118–119

starting simple, 114, 116
symbol table, 124–126
termlist, 126

Perl 6 regexes
benefits, 5
control structures, 14
functions, classes, and

methods, 15
PCRE, 5
strings, 13
variables, 12

Perl-Compatible Regular
Expressions (PCRE), 5

Pointy block, 14

Modifiers (cont.)

Index

199

Positional captures, 47–48, 55
Possessive quantifier, 69
Postfix operators, 181
Powerset construction, 61
Precomposed characters, 161
Predictive parser, 109
Proto regexes

but operator, 107
defined, 105
JSON grammar, 105

Pythonesque
action objects

handle_indentation
method, 193

if-statement, 190–192
leave_scope, 193

defined, 183
if-statement, 187
self.enter_scope() into

method, 189
sentinel value, 187–188
whitespace, 185

Q
Quantifiers

capture, 49
defined, 26
frugal, 27
greedy, 27
possessive, 69
RANGE, 27
separator, 27–28

Quoted strings

backslash, 81–82
character class, 81
CSV file, 80
escape sequences, 82
naïve approach, 80
unbalanced input, 81

Quote forms, 34

R
Rakudo Perl 6

binary linux packages, 8
docker-based installation, 8–9
running perl6, 9, 11
Rakudo OS Packages, 8
Rakudo Star, 8
zef, 7

Recursive descent
parsing, 112

Regexes
blocks, 44
code blocks, 45
defined, 1
searching, 1–2
variables, 42–43

Regular expressions, 4
Regular language, 4
Role composition, 102–103

S
Secret Magic Sauce™, 68
Sentinel value, 187–188
S-Expressions

Index

200

action method, 171, 173
atom, 166
defined, 165
grammar rules, 168–169
identifiers, 167
Lisp programming languages,

166
nok, 169
proto token, 166
string contents, 167
test code, 168–169
whitespace-delimited list of

atoms, 169, 171
Smart-match operator, 33–34

quote forms, 35
Split method, 39
State machines

accepting, 58
DFA (see Deterministic finite

automaton (DFA))
finite, 57
NFAs (see Nondeterministic

finite automata (NFA))
Strings, 13

contents, 167
double-quoted, 43
.match method, 34
replacement, 39–40

Str.lines method, 151
Structured Query Language (SQL)

inheritance, 100, 102
subst method, 39–42
Syllabary, 160

Symbolic Expressions. See
S-Expressions

Symbol table
defined, 124
elements, 125
explicitly call methods, 131
LEAVE phaser, 133
rule statement, 126

T
Test Anything Protocol format, 85
Testing module

failing test output, 85
for loops, 84
MAIN subroutine, 86, 88
named argument, 88
short summary, 85–86
strings, 83–84

Text processing tools, 4
Text segmentation, 160
Tokenization. See Lexical analysis
TOP regex, 99
Top-down approach, 109
Two-step method, 94

U
Unicode

characters, 23
properties and categories,

25, 163–164
uniprop method, 164

Index

201

V
Variables, 12, 42–43

W, X, Y
Web applications, 3
Whitespace

INI parser, 121, 123
insertion of implicit, 97–98
single blank, 97
SQL statements, 96

Writing systems

alphabet, 159
consonant alphabets, 160
ideograms, 160
phonemes, 159
syllabary, 160
text segmentation, 160

ws method, 154

Z
Zero-width assertion

look-ahead, 31

look-behind, 32

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: What are Regexes and Grammars?
	1.1	 Use Cases
	 Searching
	 Validation
	 Parsing

	1.2	 Regexes or Regular Expressions?
	1.3	 What’s So Special about Perl 6 Regexes?

	Chapter 2: Getting Started with Perl 6
	2.1	 Installing Rakudo Perl 6
	 Rakudo Star from Native Installers
	 Binary Linux Packages
	 Docker-Based Installation

	2.2	 Using Rakudo Perl 6
	2.3	 Obtaining the Code Examples
	2.4	 First Steps with Perl 6
	 Variables and Values
	 Strings
	 Control Structures
	 Functions, Classes, and Methods
	 Learning More About Perl 6

	2.5	 Summary

	Chapter 3: The Building Blocks of Regexes
	3.1	 Literals
	3.2	 Meta Characters vs. Literals
	3.3	 Anchors
	3.4	 Predefined Character Classes
	 User-Defined Character Classes
	 Unicode Properties

	3.5	 Quantifiers
	 Greedy and Frugal Quantifiers
	 Quantifiers with Separators

	3.6	 Disjunction
	3.7	 Conjunction
	3.8	 Zero-Width Assertions
	3.9	 Summary

	Chapter 4: Regexes and Perl 6 Code
	4.1	 Smart-Matching
	4.2	 Quote Forms
	4.3	 Modifiers
	4.4	 Comb and Split
	4.5	 Substitution
	4.6	 Crossing the Code and Regex Boundary
	4.7	 Summary

	Chapter 5: Extracting Data from Regex Matches
	5.1	 Positional Captures
	5.2	 The Match Object
	 Nesting of Captures
	 Quantified Captures

	5.3	 Named Captures
	5.4	 Backreferences
	 Excursion: Primality Test with Backreferences

	5.5	 Match Objects Revisited
	5.6	 Summary

	Chapter 6: Regex Mechanics
	6.1	 Matching with State Machines
	 Deterministic State Machines
	 Nondeterministic State Machines

	6.2	 Regex Control Flow
	6.3	 Backtracking
	6.4	 Why Would You Want to Avoid Backtracking?
	 Performance
	 Correctness

	6.5	 Frugal Quantifiers and Backtracking
	6.6	 Longest Token Matching
	6.7	 Summary

	Chapter 7: Regex Techniques
	7.1	 Know Your Data Format
	 Well-Defined Data Formats
	 Exploring Data Formats

	7.2	 Think About Invalid Inputs
	7.3	 Use Anchors
	7.4	 Matching Quoted Strings
	 Quoted Strings with Escaping Sequences

	7.5	 Testing Regexes
	7.6	 Summary

	Chapter 8: Reusing and Composing Regexes
	8.1	 Named Regexes
	 Lexical Analysis and Backtracking Control

	8.2	 Whitespace
	8.3	 Grammars
	8.4	 Code Reuse with Grammars
	 Inheritance
	 Role Composition

	8.5	 Proto Regexes
	8.6	 Summary

	Chapter 9: Parsing with Grammars
	9.1	 Understanding Grammars
	 Recursive Descent Parsing and Precedence
	 Left Recursion and Other Traps

	9.2	 Starting Simple
	9.3	 Assembling Complete Grammars
	9.4	 Debugging Grammars
	9.5	 Parsing Whitespace and Comments
	9.6	 Keeping State
	 Implementing Lexical Scoping with Dynamic Variables
	 Scoping Through Explicit Symbol Tables

	9.7	 Summary

	Chapter 10: Extracting Data from Matches
	10.1 Action Objects
	10.2 Building ASTs with Action Objects
	10.3 Keeping State in Action Objects
	10.4 Summary

	Chapter 11: Generating Good Parse Error Messages
	11.1 Exploring the Problem
	11.2 Assertions
	11.3 Improved Position Reporting
	11.4 High-Water Marks
	11.5 Parser Combinator and FAILGOAL
	11.6 Which Techniques to Use?
	11.7 Summary

	Chapter 12: Unicode and Natural Language
	12.1 Writing Systems
	12.2 Bytes, Code Points, Graphemes, and Glyphs
	 Grapheme Clusters
	Glyphs

	12.3 Unicode Properties
	12.4 Summary

	Chapter 13: Case Studies
	13.1 S-Expressions
	 Parsing S-Expressions
	 Data Extraction

	13.2 Mathematical Expressions and Operator Precedence Parsers
	 A Simple Operator Precedence Parser
	 A More Flexible Approach

	13.3 Pythonesque, an Indentation-Based Language
	 A Grammar for Pythonesque
	 Action Objects

	13.4 Summary

	Index

